已知 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

已知△ABC的外接圓的圓心O,BC>CA>AB,則
OA
OB
,
OA
OC
OB
OC
的大小關(guān)系為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

15、已知y=2x,x∈[2,4]的值域?yàn)榧螦,y=log2[-x2+(m+3)x-2(m+1)]定義域?yàn)榧螧,其中m≠1.
(Ⅰ)當(dāng)m=4,求A∩B;
(Ⅱ)設(shè)全集為R,若A⊆CRB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知y=f(x)是定義在[-1,1]上的奇函數(shù),x∈[0,1]時(shí),f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)時(shí),y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設(shè)BC中點(diǎn)為E,連結(jié)AE、PE

      

      

       ,PB=PC

      

      

      

  • <fieldset id="ug8ws"><noframes id="ug8ws"></noframes></fieldset><center id="ug8ws"><strong id="ug8ws"></strong></center><bdo id="ug8ws"><em id="ug8ws"></em></bdo>

    //

    //

    <bdo id="ug8ws"><tr id="ug8ws"></tr></bdo>
  • //

          

    四邊形CHFD為平行四邊形,CH//DF

          

           又

           平面PBC

          

           ,DF平面PAD

           平面PAB

    21.解:設(shè)

          

          

           對(duì)成立,

           依題有成立

           由于成立

              ①

           由于成立

             

           恒成立

              ②

           綜上由①、②得

     

     

    22.解:設(shè)列車(chē)從各站出發(fā)時(shí)郵政車(chē)廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

       (1)

           在第k站出發(fā)時(shí),前面放上的郵袋個(gè)

           而從第二站起,每站放下的郵袋個(gè)

           故

          

           即從第k站出發(fā)時(shí),共有郵袋

       (2)

           當(dāng)n為偶數(shù)時(shí),

           當(dāng)n為奇數(shù)時(shí),

    23.解:①

           上為增函數(shù)

           ②增函數(shù)

          

          

          

          

          

           同理可證

          

          

    24.解:(1)假設(shè)存在滿(mǎn)足題意

           則

          

           均成立

          

          

           成立

           滿(mǎn)足題意

       (2)

          

          

          

          

           當(dāng)n=1時(shí),

          

           成立

           假設(shè)成立

           成立

           則

          

          

          

          

          

          

          

          

          

          

           即得成立

           綜上,由數(shù)學(xué)歸納法可知

     

     

     


    同步練習(xí)冊(cè)答案