4. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項之和仍為數(shù)列{cn}中的項”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)在如圖的坐標(biāo)系中作出同時滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
(Ⅱ)若實數(shù)x,y滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)
x+yx
的取值范圍.精英家教網(wǎng)

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設(shè)BC中點為E,連結(jié)AE、PE

      

      

       ,PB=PC

      

      

      

//

//

        • //

                

          四邊形CHFD為平行四邊形,CH//DF

                

                 又

                 平面PBC

                

                 ,DF平面PAD

                 平面PAB

          21.解:設(shè)

                

                

                 對成立,

                 依題有成立

                 由于成立

                    ①

                 由于成立

                   

                 恒成立

                    ②

                 綜上由①、②得

           

           

          22.解:設(shè)列車從各站出發(fā)時郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

             (1)

                 在第k站出發(fā)時,前面放上的郵袋

                 而從第二站起,每站放下的郵袋

                 故

                

                 即從第k站出發(fā)時,共有郵袋

             (2)

                 當(dāng)n為偶數(shù)時,

                 當(dāng)n為奇數(shù)時,

          23.解:①

                 上為增函數(shù)

                 ②增函數(shù)

                

                

                

                

                

                 同理可證

                

                

          24.解:(1)假設(shè)存在滿足題意

                 則

                

                 均成立

                

                

                 成立

                 滿足題意

             (2)

                

                

                

                

                 當(dāng)n=1時,

                

                 成立

                 假設(shè)成立

                 成立

                 則

                

                

                

                

                

                

                

                

                

                

                 即得成立

                 綜上,由數(shù)學(xué)歸納法可知

           

           

           


          同步練習(xí)冊答案