題目列表(包括答案和解析)
已知曲線上動點
到定點
與定直線
的距離之比為常數
.
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點
為圓心作圓
:
,設圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關于X軸對稱,設,, 不妨設
.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當
時,
取得最小值為
.
計算得,,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:
如圖,分別是橢圓
:
+
=1(
)的左、右焦點,
是橢圓
的頂點,
是直線
與橢圓
的另一個交點,
=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40
,求
的值.
【解析】 (Ⅰ)由題=60°,則
,即橢圓
的離心率為
。
(Ⅱ)因△的面積為40
,設
,又面積公式
,又直線
,
又由(Ⅰ)知,聯(lián)立方程可得
,整理得
,解得
,
,所以
,解得
。
1 |
4 |
1 |
2 |
已知,
是橢圓
左右焦點,它的離心率
,且被直線
所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是其橢圓上的任意一點,當
為鈍角時,求
的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質由得
所以橢圓方程可設為:
,然后利用
得得
橢圓方程為
第二問中,當為鈍角時,
,
得
所以
得
解:(Ⅰ)由得
所以橢圓方程可設為:
3分
得得
橢圓方程為
3分
(Ⅱ)當為鈍角時,
,
得
3分
所以
得
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com