化簡得.從而可知點P.F.Q三點共線.即直線PQ恒過點F(0.1)----15分 查看更多

 

題目列表(包括答案和解析)

已知曲線上動點到定點與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

由于點M在橢圓C上,所以

由已知,則

,

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

(08年龍巖一中沖刺文)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直線坐標系中,利用求動點軌跡方程的方法,可以求出過點,且法向量為的直線(點法式)方程為,化簡得. 類比以上方法,在空間直角坐標系中,經(jīng)過點且法向量為的平面(點法式)方程為_______________________.

(請寫出化簡后的結(jié)果)

查看答案和解析>>

我們把在平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系xOy中,利用求動點軌跡方程的方法,可以求出過點A(-3,4),且其法向量為
n
=(1,-2)
的直線方程為1x(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0.類比上述方法,在空間坐標系O-xyz中,經(jīng)過點A(1,2,3),且其法向量為
n
=(-1,-2,1)
的平面方程為
 

查看答案和解析>>

(2010•臺州一模)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系中,利用求動點軌跡方程的方法,可以求出過點A(-3,4),且法向量為
n
=(1,-2)
的直線(點法式)方程為1×(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0. 類比以上方法,在空間直角坐標系中,經(jīng)過點A(3,4,5),且法向量為
n
=(2,1,3)
的平面(點法式)方程為
2x+y+3z-21=0
2x+y+3z-21=0
(請寫出化簡后的結(jié)果).

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直線坐標系中,利用求動點軌跡方程的方法,可以求出過點,且法向量為的直線(點法式)方程為,化簡得. 類比以上方法,在空間直角坐標系中,經(jīng)過點且法向量為的平面(點法式)方程為******      。(請寫出化簡后的結(jié)果)

 

查看答案和解析>>


同步練習冊答案