查看更多

 

題目列表(包括答案和解析)

(本小題滿分15分)

已知函數(shù),其中 (),若相鄰兩對(duì)稱軸間的距離不小于

   (Ⅰ)求的取值范圍;

   (Ⅱ)在中,分別是角的對(duì)邊,,當(dāng)最大時(shí),,求的面積.

查看答案和解析>>

(本小題滿分15分)

某旅游商品生產(chǎn)企業(yè),2009年某商品生產(chǎn)的投入成本為1元/件,

出廠價(jià)為流程圖的輸出結(jié)果元/件,年銷售量為10000件,

因2010年國家長假的調(diào)整,此企業(yè)為適應(yīng)市場需求,

計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每件投入成本增加的

比例為),則出廠價(jià)相應(yīng)提高的比例為

同時(shí)預(yù)計(jì)銷售量增加的比例為

已知得利潤(出廠價(jià)投入成本)年銷售量.

(Ⅰ)寫出2010年預(yù)計(jì)的年利潤

與投入成本增加的比例的關(guān)系式;

(Ⅱ)為使2010年的年利潤比2009年有所增加,

問:投入成本增加的比例應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

(本小題滿分15分)某地有三個(gè)村莊,分別位于等腰直角三角形ABC的三個(gè)頂點(diǎn)處,已知AB=AC=6km,現(xiàn)計(jì)劃在BC邊的高AO上一點(diǎn)P處建造一個(gè)變電站. 記P到三個(gè)村莊的距離之和為y.

(1)設(shè),把y表示成的函數(shù)關(guān)系式;

(2)變電站建于何處時(shí),它到三個(gè)小區(qū)的距離之和最小?

查看答案和解析>>

(本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)證明:直線PQ與圓O相切.

查看答案和解析>>

(本小題滿分15分)已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足,其前n項(xiàng)和為Sn.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)若S2S1Sm(m∈N*)的等比中項(xiàng),求正整數(shù)m的值.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空題

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答題

18.解:由橢圓的標(biāo)準(zhǔn)方程知橢圓的焦點(diǎn)為,離心率為………………3分

因?yàn)殡p曲線與橢圓有相同的焦點(diǎn),所以,雙曲線焦點(diǎn)在x軸上,c=4,………………2分

又雙曲線與橢圓的離心率之和為,故雙曲線的離心率為2,所以a=2………………4分

又b2=c2-a2=16-4=12!2分

所以雙曲線的標(biāo)準(zhǔn)方程為!1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1!2分

都是假命題知:p真q假,………………………………………………4分

!4分

20.解:(1)設(shè)|PF2|=x,則|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由題知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入橢圓方程得,………………………………………2分

故Q點(diǎn)的坐標(biāo)為,,。

…………………………………………………………………………………………………2分

21.解:(1)由函數(shù),求導(dǎo)數(shù)得,…1分

由題知點(diǎn)P在切線上,故f(1)=4,…………………………………………………………1分

又切點(diǎn)在曲線上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

極大值

極小值

有表格或者分析說明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值為13。故m的取值范圍為{m|m>13}………………………2分

22.解:(1)由題意設(shè)過點(diǎn)M的切線方程為:,…………………………1分

代入C得,則,………………2分

,即M(-1,).………………………………………2分

另解:由題意得過點(diǎn)M的切線方程的斜率k=2,…………………………………………1分

設(shè)M(x0,y0),,………………………………………………………………1分

由導(dǎo)數(shù)的幾何意義可知2x0+4=2,故x0= -1,……………………………………………2分

代入拋物線可得y0=,點(diǎn)M的坐標(biāo)為(-1,)……………………………………1分

(2)假設(shè)在C上存在點(diǎn)滿足條件.設(shè)過Q的切線方程為:,代入,

,

.………………………………………………………2分

時(shí),由于,…………………2分

當(dāng)a>0時(shí),有

或  ;……………………………………2分

當(dāng)a≤0時(shí),∵k≠0,故 k無解!1分

若k=0時(shí),顯然也滿足要求.…………………………………………1分

綜上,當(dāng)a>0時(shí),有三個(gè)點(diǎn)(-2+,),(-2-,)及(-2,-),且過這三點(diǎn)的法線過點(diǎn)P(-2,a),其方程分別為:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

當(dāng)a≤0時(shí),在C上有一個(gè)點(diǎn)(-2,-),在這點(diǎn)的法線過點(diǎn)P(-2,a),其方程為:x=-2!3分

 

 

 

 

 


同步練習(xí)冊(cè)答案