.12 .96 24 .48 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列中,若是a2+4a7+a12=96,則2a3+a15=   (    )

A.12     B.48     C.24     D.96

查看答案和解析>>

在等差數(shù)列中,若是a2+4a7+a12=96,則2a3+a15=   (    )

A.12     B.48     C.24     D.96

查看答案和解析>>

在等差數(shù)列中,若是a2+4a7+a12=96,則2a3+a15等于

[  ]

A.12

B.96

C.24

D.48

查看答案和解析>>

電視臺(tái)連續(xù)播放6個(gè)廣告,其中含4個(gè)不同的商業(yè)廣告和2個(gè)不同的公益廣告,要求首尾必須播放公益廣告,則不同的播放方式有( )
A.12種
B.24種
C.48種
D.96種

查看答案和解析>>

四棱錐的8條棱代表8種不同的化工產(chǎn)品,有公共點(diǎn)的兩條棱代表的化工產(chǎn)品放在同一倉(cāng)庫(kù)是危險(xiǎn)的,沒(méi)有公共頂點(diǎn)的兩條棱所代表的化工產(chǎn)品放在同一倉(cāng)庫(kù)是安全的,現(xiàn)打算用編號(hào)為①、②、③、④的4個(gè)倉(cāng)庫(kù)存放這8種化工產(chǎn)品,那么安全存放的不同方法種數(shù)為                                                      (    )

A.96                 B.48             C.24             D.12

 

查看答案和解析>>

一、選擇題:DDBD   CCBA

二、填空題:9、  10、-2    11、1    12、11   

13、解析:    14、

15、解:(Ⅰ)時(shí),f(x)>1

令x=-1,y=0則f(-1)=f(-1)f(0)∵f(-1)>1

∴f(0)=1

若x>0,則f(x-x)=f(0)=f(x)f(-x)故

故x∈R   f(x)>0

任取x1<x2   

故f(x)在R上減函數(shù)

(Ⅱ)①  由f(x)單調(diào)性

 an+1=an+2  故{an}等差數(shù)列    

   是遞增數(shù)列

 當(dāng)n≥2時(shí),

 

而a>1,∴x>1

故x的取值范圍(1,+∞)

16、解:(I),

(舍去)

單調(diào)遞增;

當(dāng)單調(diào)遞減. 

上的極大值 

   (II)由

, …………① 

設(shè),

,

依題意知上恒成立,

,

,

 上單增,要使不等式①成立,

當(dāng)且僅當(dāng) 

   (III)由

,

當(dāng)上遞增;

當(dāng)上遞減 

,

恰有兩個(gè)不同實(shí)根等價(jià)于

        

17、解:(Ⅰ)由題可得

所以曲線在點(diǎn)處的切線方程是:

,得.即.顯然,∴

(Ⅱ)由,知,同理

   故

從而,即.所以,數(shù)列成等比數(shù)列.

.即

從而所以

(Ⅲ)由(Ⅱ)知,

當(dāng)時(shí),顯然

當(dāng)時(shí),

   綜上,

18、解:(I)

(舍去)

單調(diào)遞增;

當(dāng)單調(diào)遞減.  

上的極大值  

   (II)由

, …………①  

設(shè),

,

依題意知上恒成立,

,

 上單增,要使不等式①成立,

當(dāng)且僅當(dāng)

   (III)由

,

當(dāng)上遞增;

當(dāng)上遞減  

,

恰有兩個(gè)不同實(shí)根等價(jià)于

  

 


同步練習(xí)冊(cè)答案