(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和.且 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P(x1,y1)、Q(x2,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn)。
(1)求直線A1P與A2Q交點(diǎn)的軌跡E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A、B,且?若存在,求出該圓的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

設(shè)雙曲線的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn)。
 (1)求直線A1P與A2Q交點(diǎn)的軌跡E的方程;
 (2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A、B,且?若存在,求出該圓的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
3
3
,且過(guò)點(diǎn)P(
6
,1).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若直線l:y=kx+
2
與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

已知雙曲線C:的離心率為,且過(guò)點(diǎn)P(,1)

(1)求雙曲線C的方程;

(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)A和B,且(O為坐標(biāo)原點(diǎn)),求k的取值范圍.

 

查看答案和解析>>

已知雙曲線的離心率

   (Ⅰ)求雙曲線C的方程;

   (Ⅱ)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且,

求k的取值范圍.

查看答案和解析>>

         天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長(zhǎng)  么世濤

一、選擇題 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空題:9.60;  10. 15:10:20   ;  11.;  12.

13.0.74  ; 14. ①、;②、圓;③.

提示: 9.

10.,

11.,

12.,

,

13.

14.略

 

三、解答題

15. 解:(1).    

  (2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則,  

    ,得:,即

   故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.  

16. 解:由題意得,,原式可化為,

   

故原式=.

17. 解:(1)顯然,連接,∵,

.由已知,∴,.

 ∵,

.

 ∴.        

 (2)     

當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí),即的中點(diǎn).于是由,知平面,是其交線,則過(guò)

 ∴就是與平面所成的角.由已知得,,

 ∴, , .      

(3) 設(shè)三棱錐的內(nèi)切球半徑為,則

,,,,,

 ∴.     

18. (1) ,   

(2) ∵

∴當(dāng)時(shí),      

∴當(dāng)時(shí),  

,,,.

的最大值為中的最大者.

∴ 當(dāng)時(shí),有最大值為

19.(1)解:∵函數(shù)的圖象過(guò)原點(diǎn),

,

.      

又函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,

, .

(2)解:由題意有  即

 即,即.

 ∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.

 ∴,即. ∴.

  ∴ ,

(3)證明:當(dāng)時(shí),   

 故       

20. (1)解:∵,又,

    ∴.             又∵     

    ,且

.        

(2)解:由,猜想

    (3)證明:用數(shù)學(xué)歸納法證明:

    ①當(dāng)時(shí),,猜想正確;

    ②假設(shè)時(shí),猜想正確,即

1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

   

   2°若為正偶數(shù),則為正整數(shù),

,又,且

所以

即當(dāng)時(shí),猜想也正確          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是

4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:

  • <form id="takcq"></form>
    <input id="takcq"></input>

      <sup id="takcq"></sup>
        <style id="takcq"></style>
            1. 人的編號(hào)

              1

              2

              3

              4

              5

              座位號(hào)

              1

              2

              5

              3

              4

               

              人的編號(hào)

              1

              2

              3

              4

              5

              座位號(hào)

              1

              2

              4

              5

              3

               

                                                               

               

               

              所以,符合條件的共有10×2=20種。

              5. ,又,所以

              ,且,所以

              6.略

              7.略

              8. 密文shxc中的s對(duì)應(yīng)的數(shù)字為19,按照變換公式:

              ,原文對(duì)應(yīng)的數(shù)字是12,對(duì)應(yīng)的字母是;

              密文shxc中的h對(duì)應(yīng)的數(shù)字為8,按照變換公式:

              ,原文對(duì)應(yīng)的數(shù)字是15,對(duì)應(yīng)的字母是;

              二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

              提示:

              9.  ,

              10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

                又,所以

              11. 特殊值法。取通徑,則,,

              。

              12.因,,所以同解于

              所以。

              13.略 。

               

              14、(1)如圖:∵

              ∴∠1=∠2=∠3=∠P+∠PFD          

              =∠FEO+∠EFO

              ∴∠FEO=∠P,可證△OEF∽△DPF

              即有,又根據(jù)相交弦定理DF?EF=BF?AF

              可推出,從而

              ∴PF=3

              (2) ∵PFQF,  ∴  ∴

              (3)略。

              三、15.解:(1)  依題知,得  

              文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹洳簧普叨闹。精通?nèi)部學(xué)員使用么老師答疑電話
13702071025
 所以

              (2) 由(1)得

                  

              ∴            

              的值域?yàn)?sub>。

               

              16.解:設(shè)飛機(jī)A能安全飛行的概率為,飛機(jī)B能安全飛行的概率為,則

                所以

              當(dāng)時(shí),,;

              當(dāng)時(shí),,,

              當(dāng)時(shí),,,;

              故當(dāng)時(shí),飛機(jī)A安全;當(dāng)時(shí),飛機(jī)A與飛機(jī)B一樣安全;當(dāng)時(shí),飛機(jī)B安全。

               

              17.(1) 證明:以D為坐標(biāo)原點(diǎn),DA所在的直線x

              軸,建立空間直角坐標(biāo)系如圖。

              設(shè),則

              ,,,

              ,

              ,所以

                                  即  ,也就是

              ,所以 ,即。

              (2)解:方法1、找出二面角,再計(jì)算。

               

              方法2、由(1)得:(當(dāng)且僅當(dāng)取等號(hào))

              分別為的中點(diǎn),于是 ,。

              ,所以 ,

              設(shè)是平面的一個(gè)法向量,則

                也就是

              易知是平面的一個(gè)法向量,

                                 

              18.(1) 證明:依題知得:

              整理,得

               所以   即 

              故 數(shù)列是等差數(shù)列。

              (2) 由(1)得   即 ()

                所以

               =

              =

               

              19.解:(1) 依題知得

              欲使函數(shù)是增函數(shù),僅須

              同步練習(xí)冊(cè)答案