題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù)。
(Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項和。是否存在實數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗,則,
,得:,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當(dāng)且僅當(dāng)時,等號成立.此時,即為的中點.于是由,知平面,是其交線,則過作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設(shè)三棱錐的內(nèi)切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時,
∴當(dāng)時,,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當(dāng)時,有最大值為.
19.(1)解:∵函數(shù)的圖象過原點,
∴即,
∴.
又函數(shù)的圖象關(guān)于點成中心對稱,
∴, .
(2)解:由題意有 即,
即,即.
∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.
∴,即. ∴.
∴ ,,,.
(3)證明:當(dāng)時,
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時,,猜想正確;
②假設(shè)時,猜想正確,即
1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),
2°若為正偶數(shù),則為正整數(shù),
,又,且
所以
即當(dāng)時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|