題目列表(包括答案和解析)
縱觀歷史,中國電信業(yè)的發(fā)展主要是在20世紀(jì)的后20年,尤其是90年代至今真正實(shí)現(xiàn)了電信的“起飛”.中國電話網(wǎng)規(guī)模從1995年的第4位提升為目前的第2位,進(jìn)入世界前列.目前,中國的電話用戶,特別是移動(dòng)電話還在加速增長,截止到2001年9月,中國的電話用戶達(dá)到3.03億戶,其中固定電話1.72億戶,移動(dòng)電話達(dá)到1.31億戶.在2001年前9個(gè)月里,移動(dòng)電話用戶平均每個(gè)月新增500多萬戶,中國移動(dòng)電話用戶的總規(guī)模已超過美國,排世界第一位.中國每百人電話機(jī)普及率在80年代和90年代的年均增長率分別達(dá)到9%和30%左右.到2001年9月,全國電話普及率達(dá)到24.4%,移動(dòng)電話普及率達(dá)到9.2%.中國電信業(yè)的起飛,為中國的經(jīng)濟(jì)發(fā)展和社會(huì)進(jìn)步奠定了一個(gè)良好的基礎(chǔ).
中國網(wǎng)通為了配合客戶的不同需要,設(shè)有A、B兩種優(yōu)惠方案,這兩種方案應(yīng)付話費(fèi)(元)與通話時(shí)間(分鐘)之間的關(guān)系如圖所示(MN∥CD).
(1)若通話時(shí)間為2小時(shí),按方案A、B各付話費(fèi)多少元?
(2)方案B從500分鐘以后,每分鐘收費(fèi)多少元?
(3)通話時(shí)間在什么范圍內(nèi),方案B才會(huì)比方案A優(yōu)惠?
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則,
,得:,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí),即為的中點(diǎn).于是由,知平面,是其交線,則過作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設(shè)三棱錐的內(nèi)切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時(shí),
∴當(dāng)時(shí),,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當(dāng)時(shí),有最大值為.
19.(1)解:∵函數(shù)的圖象過原點(diǎn),
∴即,
∴.
又函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,
∴, .
(2)解:由題意有 即,
即,即.
∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.
∴,即. ∴.
∴ ,,,.
(3)證明:當(dāng)時(shí),
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),,猜想正確;
②假設(shè)時(shí),猜想正確,即
1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),
2°若為正偶數(shù),則為正整數(shù),
,又,且
所以
即當(dāng)時(shí),猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:
|