(Ⅰ)求點(diǎn)在作用下的點(diǎn)的坐標(biāo), 查看更多

 

題目列表(包括答案和解析)

22.(1)求右焦點(diǎn)坐標(biāo)是,且經(jīng)過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

(2)已知橢圓的方程是. 設(shè)斜率為的直線,交橢圓兩點(diǎn),的中點(diǎn)為. 證明:當(dāng)直線平行移動時,動點(diǎn)在一條過原點(diǎn)的定直線上;

(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

(1)若點(diǎn)A(a,b)(其中a≠b)在矩陣M=
0-1
10
對應(yīng)變換的作用下得到的點(diǎn)為B(-b,a).
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=
0
1
2
10
所對應(yīng)變換的作用下得到的新的曲線C′的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
(Ⅰ)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R)
,它與曲線
x=2+
5
cosθ
y=1+
5
sinθ
為參數(shù))相交于兩點(diǎn)A和B,求|AB|;
(Ⅱ)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:ρcos(θ-
π
4
)=
2
,曲線C2的參數(shù)方程為:
x=1+cosθ
y=3+sinθ
(θ為參數(shù)),試求曲線C2關(guān)于直線C1對稱的曲線的直角坐標(biāo)方程.
(3)選修4-5:不等式選講
(Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求實(shí)數(shù)m的取值范圍.
(Ⅱ)已知實(shí)數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

在直角坐標(biāo)平面內(nèi),將每個點(diǎn)繞原點(diǎn)按逆時針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為,將每個點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/9/sfwpq1.png" style="vertical-align:middle;" />倍的變換所對應(yīng)的矩陣為
(1)求矩陣的逆矩陣;
(2)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.

查看答案和解析>>

在直角坐標(biāo)平面內(nèi),將每個點(diǎn)繞原點(diǎn)按逆時針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為,將每個點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052502322344.png" style="vertical-align:middle;" />倍的變換所對應(yīng)的矩陣為
(1)求矩陣的逆矩陣
(2)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.

查看答案和解析>>

設(shè)M是把坐標(biāo)平面上點(diǎn)的橫坐標(biāo)不變、縱坐標(biāo)沿y軸方向伸長為原來5倍的伸壓變換.
(1)求直線4x-10y=1在M作用下的方程;
(2)求M的特征值與特征向量.

查看答案和解析>>

 

第 一 部 分

 

一、填空題:

1.        2.          3.1            4.16

5.                                 6.               7.64           8.

9.25                                 10.①④            11.        12.

13.                          14.

二、解答題:

15.解:(Ⅰ)依題意:,

,解之得(舍去)   …………………7分

(Ⅱ),∴  ,,  ………………………9分

∴    …………………………………11分

.      ……………………………………………14分

16.解:(Ⅰ)因?yàn)橹饕晥D和左視圖均為矩形、所以該三棱柱為直三棱柱.

連BC1交B1C于O,則O為BC1的中點(diǎn),連DO。

則在中,DO是中位線,

∴DO∥AC1.                ………………………………………………………4分

∵DO平面DCB1,AC1平面DCB1,

∴AC1∥平面CDB1.           ………………………………………………………7分

(Ⅱ)由已知可知是直角三角形,

∵  ,

∴  平面,平面,

∴  

∵   ,

∴  平面,

平面,

∴  。

17.解:(Ⅰ)由題意知:,

一般地: ,…4分

∴  )!7分

(Ⅱ)2008年諾貝爾獎發(fā)獎后基金總額為:

 ,…………………………………………10分

2009年度諾貝爾獎各項(xiàng)獎金額為萬美元, ………12分

與150萬美元相比少了約14萬美元。     …………………………………………14分

答:新聞 “2009年度諾貝爾獎各項(xiàng)獎金高達(dá)150萬美元”不真,是假新聞!15分

18.解:(Ⅰ)圓軸交點(diǎn)坐標(biāo)為,

,,故,    …………………………………………2分

所以,

橢圓方程是:               …………………………………………5分

(Ⅱ)設(shè)直線軸的交點(diǎn)是,依題意,

,

,

,

,

 

(Ⅲ)直線的方程是,…………………………………………………6分

圓D的圓心是,半徑是,……………………………………………8分

設(shè)MN與PD相交于,則是MN的中點(diǎn),且PM⊥MD,

……10分

當(dāng)且僅當(dāng)最小時,有最小值,

最小值即是點(diǎn)到直線的距離是,…………………12分

所以的最小值是。  ……………………………15分

 

19.解:(Ⅰ)點(diǎn)的坐標(biāo)依次為,,…,

,…,           ……………………………2分

,…,

共線;則,

, ……………………………4分

,

,

所以數(shù)列是等比數(shù)列。          ……………………………………………6分

(Ⅱ)依題意,

,

兩式作差,則有:,   ………………………8分

,故,   ……………………………………………10分

即數(shù)列是公差為的等差數(shù)列;此數(shù)列的前三項(xiàng)依次為

,

,可得,

,或,或。           ………………………………………12分

數(shù)列的通項(xiàng)公式是,或,或。    ………14分

知,時,不合題意;

時,不合題意;

時,;

所以,數(shù)列的通項(xiàng)公式是。  ……………………………………16分

 

20.解:(Ⅰ)函數(shù)定義域

,    ……………………………………………4分

(Ⅱ),由(Ⅰ)

,

,單調(diào)遞增,

所以

設(shè),

,也就是。

所以,存在值使得對一個,方程都有唯一解!10分

(Ⅲ)

,

以下證明,對的數(shù)及數(shù),不等式不成立。

反之,由,亦即成立,

因?yàn)?sub>,

,這是不可能的。這說明是滿足條件的最小正數(shù)。

這樣不等式恒成立,

恒成立,

∴  ,最小正數(shù)=4 。……………………16分

 

 第二部分(加試部分)

21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

△ADE∽△ACO,                ……………………………………………8分

CD=3                         ……………………………………………10分

(B)解:(Ⅰ),

所以點(diǎn)作用下的點(diǎn)的坐標(biāo)是!5分

(Ⅱ)

設(shè)是變換后圖像上任一點(diǎn),與之對應(yīng)的變換前的點(diǎn)是

,

也就是,即,

所以,所求曲線的方程是。……………………………………………10分

(C)解:由已知圓的半徑為,………4分

又圓的圓心坐標(biāo)為,所以圓過極點(diǎn),

所以,圓的極坐標(biāo)方程是!10分

(D)證明:

            ……………………………………6分

=2-

<2                              ……………………………………10分

 

 

 

22.解:(Ⅰ)∵,∴

∴切線l的方程為,即.……………………………………………4分

(Ⅱ)令=0,則.令=0,則x=1.

 ∴A=.………………10分

23.解:(Ⅰ)記“該生在前兩次測試中至少有一次通過”的事件為事件A,則

P(A)=

答:該生在前兩次測試中至少有一次通過的概率為。 …………………………4分

(Ⅱ)參加測試次數(shù)的可能取值為2,3,4,

      ,

    ,

      ,    ……………………………………………7分

        故的分布列為:

2

3

4

     ……………………………………………10分

 

 

 


同步練習(xí)冊答案