題目列表(包括答案和解析)
如圖9-37,兩條異面直線AB、CD與三個平行平面a 、b 、g 分別相交于A、E、B,及C、F、D,又AD、BC與平面b 的交點為H、G.求證:EHFG為平行四邊形.
設是兩個不共線的非零向量.
(1)若=,=,=,求證:A,B,D三點共線;
(2)試求實數(shù)k的值,使向量和共線. (本小題滿分13分)
【解析】第一問利用=()+()+==得到共線問題。
第二問,由向量和共線可知
存在實數(shù),使得=()
=,結合平面向量基本定理得到參數(shù)的值。
解:(1)∵=()+()+
== ……………3分
∴ ……………5分
又∵∴A,B,D三點共線 ……………7分
(2)由向量和共線可知
存在實數(shù),使得=() ……………9分
∴= ……………10分
又∵不共線
∴ ……………12分
解得
三棱柱中,側(cè)棱與底面垂直,,,分別是,的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
【解析】第一問利連結,,∵M,N是AB,的中點∴MN//.
又∵平面,∴MN//平面. ----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結,.
∴,又N中的中點,∴.
∵與相交于點C,∴MN平面. --------------9分
⑶中由⑵知MN是三棱錐M-的高.在直角中,,
∴MN=.又..得到結論。
⑴連結,,∵M,N是AB,的中點∴MN//.
又∵平面,∴MN//平面. --------4分
⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,
∴四邊形是正方形.∴.
∴.連結,.
∴,又N中的中點,∴.
∵與相交于點C,∴MN平面. --------------9分
⑶由⑵知MN是三棱錐M-的高.在直角中,,
∴MN=.又.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com