19. 已知數(shù)列||滿足 (I)求 (II)證明 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知數(shù)列滿足, .

猜想數(shù)列的單調(diào)性,并證明你的結(jié)論;

(Ⅱ)證明:。   

查看答案和解析>>

(本小題滿分12分)已知數(shù)列滿足,,),

若數(shù)列是等比數(shù)列.  (1)求數(shù)列的通項(xiàng)公式;  (2)求證:當(dāng)為奇數(shù)時(shí),;   (3)求證:).

查看答案和解析>>

(本小題滿分12分)

已知數(shù)列滿足

(1)求;

(2)已知存在實(shí)數(shù),使為公差為的等差數(shù)列,求的值;

(3)記,數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

(本小題滿分12分)

已知數(shù)列滿足

(1)求

(2)已知存在實(shí)數(shù),使為公差為的等差數(shù)列,求的值;

(3)記,數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

(本小題滿分12分)

      已知數(shù)列滿足 (p為常數(shù))

   (1)求p的值及數(shù)列的通項(xiàng)公式;

   (2)令,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

一、

1.C  2.D  3.B  4.C  5.B  6.D  7.D  8.C  9.C  10.B  11.C  12.A

二、13.   14.  15.  16.72

三、

17.(I)證明:取BD中點(diǎn)M,連結(jié)MC,F(xiàn)M,

        ∵F為BD1中點(diǎn), ∴FM∥D1D且FM=D1D

又EC=CC1,且EC⊥MC,

∴四邊形EFMC是矩形  ∴EF⊥CC1  

又CM⊥面DBD1  ∴EF⊥面DBD1

∵BD1面DBD1,

∴EF⊥BD1  故EF為BD1與CC1的公垂線

(II)解:連結(jié)ED1,有V

由(I)知EF⊥面DBD1,設(shè)點(diǎn)D1到面BDE的距離為d,

則S△DBC?d=S△DCD?EF.

∵AA1=2?AB=1.

故點(diǎn)D1到平面BDE的距離為.

18.解:設(shè)z=

        由題設(shè)

       即 

    (舍去)

 

       即|z|=

19.(I)解∵

(II)證明:由已知

     

         =

           所以

20.解(I)

               

       所以函數(shù)的最小正周期為π,最大值為.

(Ⅱ)由(Ⅰ)知

1

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.解:如圖建立坐標(biāo)系:以O(shè)為原點(diǎn),正東方向?yàn)?i>x軸正向.

        在時(shí)刻:t(h)臺(tái)風(fēng)中心的坐標(biāo)為

        此時(shí)臺(tái)風(fēng)侵襲的區(qū)域是,

        其中t+60,

        若在t時(shí),該城市O受到臺(tái)風(fēng)的侵襲,則有

即,   解得.

答:12小時(shí)后該城市開始受到臺(tái)風(fēng)氣侵襲

22.解:根據(jù)題設(shè)條件,首先求出點(diǎn)P坐標(biāo)滿足的方程,據(jù)此再判斷是否存在兩定點(diǎn),使得

點(diǎn)P到定點(diǎn)距離的和為定值.

按題意有A(-2,0),B(2,0),C(2,4a),D(-2,4a

設(shè),

由此有E(2,4ak),F(xiàn)(2-4k,4a),G(-2,4a-4ak).

直線OF的方程為:,        ①

直線GE的方程為:. 、

從①,②消去參數(shù)k,得點(diǎn)P(x,y)坐標(biāo)滿足方程,

整理得.

當(dāng)時(shí),點(diǎn)P的軌跡為圓弧,所以不存在符合題意的兩點(diǎn).

當(dāng)時(shí),點(diǎn)P軌跡為橢圓的一部分,點(diǎn)P到該橢圓焦點(diǎn)的距離的和為定長.

當(dāng)時(shí),點(diǎn)P到橢圓兩個(gè)焦點(diǎn)的距離之和為定值.

當(dāng)時(shí),點(diǎn)P到橢圓兩個(gè)焦點(diǎn)的距離之

和為定值.

 

 

 

 


同步練習(xí)冊(cè)答案