2.第Ⅱ卷所有題目的答案考生需用黑色簽字筆答在“數(shù)學(xué) 答題卡指定的位置上. 查看更多

 

題目列表(包括答案和解析)

(08年山東卷)(本小題滿分12分)

將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:

 

    

      

記表中的第一列數(shù)構(gòu)成的數(shù)列為,為數(shù)列的前項和,且滿足

(Ⅰ)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個正數(shù).當(dāng)時,求上表中第行所有項的和.

查看答案和解析>>

每小題選出答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號,不能答在試題卷上。

一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,選出符合題目要求的一項.

1.設(shè)全集,,,則=

(A)          (B)      (C)       (D)

2.已知圓的方程為,那么下列直線中經(jīng)過圓心的直線方程為

(A)                  (B)

(C)                  (D)

查看答案和解析>>

選擇題每小題選出答案后,用2B鉛筆將答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號,答在試題卷上無效。

查看答案和解析>>

(本小題滿分14分)

將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:

 

    

      

………………………

記表中的第一列數(shù)構(gòu)成的數(shù)列為為數(shù)列的前項和,且滿足

(1)證明:

(2)求數(shù)列的通項公式;

(3)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個正數(shù).當(dāng)時,求上表中第行所有項的和.

 

查看答案和解析>>

將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成下表:

  

      

          

……

記表中的第一列數(shù)、 、   、   ……構(gòu)成的數(shù)列為,為數(shù)列的前項和,且滿足

(I)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項公式;

(II)上表中,若從第三行起,每一行中的數(shù)從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個正數(shù),當(dāng)時,求上表中第行所有項的和

查看答案和解析>>

一、選擇題:

       1. C  2. C  3. B  4.C  5. D  6. D  7. C 8. D  9. B  10. A  11. C  12. C

二、填空題:

       13.  85,1.6    14.  800   15.    16.

三、解答題:

17.解: (1)………………………1分

       ,

               化簡得…………………………3分

               

       (2))

               

             令Z),函數(shù)f(α)的對稱軸方程為

              Z).………………………………………………………12分

18. 解:(1)從盒中同時摸出兩個球,有種可能情況,…………2分

       摸出兩球顏色恰好相同即兩個黑球或兩個白球,有1+種情況,……4分

       故所求概率是………………………………………………………………6分

       (2)從盒中摸出一個球,放回后再摸出一個球,共有5×5=25種情況,……8分

       若兩球顏色不同,即“先黑后白”或“先白后黑”,共有2×3+3×2=12種可能情況,故所求概率是………………………………………………………………………12分

       (本題也可一一列出基本事件空間后求解)

19.解:(1)an+1+an=3n-54, an+2+an+1=3(n+1)-54.

       兩式相減得an+2-an=3(n∈N*),

       ∴數(shù)列a1,a3,a5,……, a2, a4, a6, …都是公差為3的等差數(shù)列.……………………1分

       a1=-27, a1+a2==-51, a2=-24。采用疊加法可得,

       當(dāng)n為奇數(shù)時,an=;…………………………3分

       當(dāng)n為偶數(shù)時,an=……………………………5分

       ∴an=………………………………6分

       (2)因為n為偶數(shù),所以

              Sn=(a1+a2)+(a3+a4)+……+(an-1+an)…………………………8分

              =(3×1-54)+(3×3?54)+……+[3(n?1)?54]

              =…………………………………………10分

              若n為偶數(shù),當(dāng)n=18時,Sn取到最小值-243.……………………12分

20. (1)證明:∵PA⊥底面ABCD,∴PA⊥AD.

                       又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.……2分

                       又BC平面PCB,∴平面PAB⊥平面PCB.……4分

       (2)證明:∵PA⊥底面ABCD,∴PA⊥AD.

                       又PC⊥AD,∴AD⊥平面PAC,∴AC⊥AD.

                       在梯形ABCD中,由AB⊥BC,AB=BC,得∠BAC=,

                       ∴∠DCA=∠BAC=.

                       又AC⊥AD,故△DAC為等腰直角三角形。

                       ∴DC=2AB,  

                       ……………………8分

(3)連結(jié)BD,交AC于點M,連結(jié)EM,則

                在△BPD中,∴PD∥EM.

                又PD平面EAC,EM平面EAC,

                ∴PD∥平面EAC.……………………(12分)

21.解:(1)設(shè)直線AB的方程為y=k(x+1),

       將y=k(x+1)代入x2+3y2=5, 消去y整理得(3k2+1)x2+6k2x+3k2-5=0.………2分

       △=36k4-4(3k2+1)(3k2-5)>0恒成立,

       設(shè)A(x1,y1), B(x2,y2), 則x1+x2=,………………………………4分

       由線段AB中點的橫坐標(biāo)是,

       得解得k=±.……………………5分

       所以直線AB的方程為……………………6分

       (2)假設(shè)在x軸上存在點M(m, 0),使為常數(shù).

       由(1)知x­1+x2=

    所以

    =

       =……………………8分

       將①代入上式,整理得,

    ∴

    ∵

       綜上,在x軸上存在定點M,使為常數(shù)……………………12分

22.解:(1)f(x)的定義域為(0,+∞),f′(x)=,

令f′(x)=0,得x=e1-a.……………………3分

當(dāng)x∈(0, e1-a­­­­)時,f′(x)>0,f(x)在(0, e1-a­­­­)內(nèi)是單調(diào)遞增,當(dāng)x∈(e1-a­,+∞)時,f′(x)<0,f(x)在(e1-a,+∞)內(nèi)是單調(diào)遞減.…………………………6分

∴f(x)在x=e1-a處取得極大值f(e1-a)=ea-1.………………8分

(2)∵a>0, ∴e1-a<e2,∴[f(x)]max=f(e1-a)=ea-1,………………10分

∴f(x)的圖象g(x)=1的圖象在(0,e2]上有公共點,等價于ea-1≥1,……………12分

兩邊以e底取對數(shù)可解得a≥1,故a的取值范圍是[1,+∞)……………………14分

 

 


同步練習(xí)冊答案