查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

第Ⅰ卷

選擇題

題號

1

2

3

4

5

6

7

8

答案

B

B

B

A

C

A

D

C

 

第Ⅱ卷

、填空題

9、3 , ;    10、;     11、(A); (B);(C)();    12、0.5       13、28 ,

、解答題

14、(本小題滿分12分)

解:(Ⅰ)

                       =+

                       =+

  所以,的最小正周期 

(Ⅱ)

    

由三角函數(shù)圖象知:

的取值范圍是

 

 

 

 

15、(本小題滿分12分)

方法一:

證:(Ⅰ)在Rt△BAD中,AD=2,BD=

AB=2,ABCD為正方形,

因此BDAC.                    

PA⊥平面ABCD,BDÌ平面ABCD

BDPA .                      

又∵PAAC=A

BD⊥平面PAC.                 

解:(Ⅱ)由PA⊥面ABCD,知AD為PD在平面ABCD的射影,又CDAD,

CDPD,知∠PDA為二面角PCDB的平面角.                      

又∵PA=AD,

∴∠PDA=450 .                                                       

(Ⅲ)∵PA=AB=AD=2

PB=PD=BD=

設(shè)C到面PBD的距離為d,由,

,                              

,

         

方法二:

證:(Ⅰ)建立如圖所示的直角坐標(biāo)系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=

AB=2.

B(2,0,0)、C(2,2,0),

  

BDAP,BDAC,又APAC=A,

BD⊥平面PAC.                       

解:(Ⅱ)由(Ⅰ)得.

設(shè)平面PCD的法向量為,則,

,∴

故平面PCD的法向量可取為                              

PA⊥平面ABCD,∴為平面ABCD的法向量.             

設(shè)二面角P―CD―B的大小為q,依題意可得,

q = 450 .                                                      

(Ⅲ)由(Ⅰ)得

設(shè)平面PBD的法向量為,則,

,∴x=y=z

故平面PBD的法向量可取為.                             

,

C到面PBD的距離為                          

 

 

16、(本小題滿分14分)

解:(1)設(shè)“甲射擊4次,至少1次未擊中目標(biāo)”為事件A,則其對立事件為“4次均擊中目標(biāo)”,則

(2)設(shè)“甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次”為事件B,則

(3)設(shè)“乙恰好射擊5次后,被中止射擊”為事件C,由于乙恰好射擊5次后被中止射擊,故必然是最后兩次未擊中目標(biāo),第三次擊中目標(biāo),第一次及第二次至多有一次未擊中目標(biāo)。

 

17、(本小題滿分14分)

解:(Ⅰ)由  得

可得

因為,所以   解得,因而

 (Ⅱ)因為是首項、公比的等比數(shù)列,故

則數(shù)列的前n項和

前兩式相減,得 

   即 

 

 

18、(本小題滿分14分)

解:(1) ,設(shè)切點為,則曲線在點P的切線的斜率,由題意知有解,

.

 (2)若函數(shù)可以在時取得極值,

有兩個解,且滿足.

易得.

(3)由(2),得.

根據(jù)題意,()恒成立.

∵函數(shù))在時有極大值(用求導(dǎo)的方法),

且在端點處的值為.

∴函數(shù))的最大值為.  

所以.

 

19、(本小題滿分14分)

解:(1)∵成等比數(shù)列 ∴ 

設(shè)是橢圓上任意一點,依橢圓的定義得

 

為所求的橢圓方程.

(2)假設(shè)存在,因與直線相交,不可能垂直

因此可設(shè)的方程為:

  ①

方程①有兩個不等的實數(shù)根

、

設(shè)兩個交點的坐標(biāo)分別為 ∴

∵線段恰被直線平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得

∴直線的傾斜角范圍為

 

 

 


同步練習(xí)冊答案