21.解:(1)由得-------- 又的定義域為.所以 當(dāng)時. 當(dāng)時..為減函數(shù) 當(dāng)時..為增函數(shù)--------- 所以當(dāng)時.的單調(diào)遞增區(qū)間為 單調(diào)遞減區(qū)間為------- 知當(dāng)時..遞增無極值--- 所以在處有極值.故且 因為且.所以在上單調(diào) 當(dāng)為增區(qū)間時.恒成立.則有 --------------- 當(dāng)為減區(qū)間時.恒成立.則有 無解 -------- 由上討論得實數(shù)的取值范圍為 ---------- 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處取得極值2.

⑴ 求函數(shù)的解析式;

⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;

【解析】第一問中利用導(dǎo)數(shù)

又f(x)在x=1處取得極值2,所以

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                …………12分

.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊答案