方程=0所表示的圖形是 A一條直線及一個(gè)圓 B兩個(gè)點(diǎn) C一條射線及一個(gè)圓 D兩條射線及一個(gè)圓 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)設(shè)b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為y=
1
8
x2+b
,如圖所示,過(guò)點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G,已知拋物線在點(diǎn)G處的切線經(jīng)過(guò)橢圓的右焦點(diǎn)F1
(1)求點(diǎn)G和點(diǎn)F1的坐標(biāo)(用b表示);
(2)求滿足條件的橢圓方程和拋物線方程;
(3)設(shè)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

如圖所示,在平面直角坐標(biāo)系xOy上放置一個(gè)邊長(zhǎng)為1的正方形PABC,此正方形PABC沿x軸滾動(dòng)(向左或向右均可),滾動(dòng)開始時(shí),點(diǎn)P位于原點(diǎn)處,設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),x∈R,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為m.
(1)寫出m的值并求出當(dāng)0≤x≤m時(shí),點(diǎn)P運(yùn)動(dòng)路徑的長(zhǎng)度l;
(2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達(dá)式;研究該函數(shù)的性質(zhì)并填寫下面表格:
函數(shù)性質(zhì)結(jié)  論
奇偶性______
單調(diào)性遞增區(qū)間______
遞減區(qū)間______
零點(diǎn)______
(3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個(gè)數(shù)及相應(yīng)實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(2012•浦東新區(qū)一模)如圖所示,在平面直角坐標(biāo)系xOy上放置一個(gè)邊長(zhǎng)為1的正方形PABC,此正方形PABC沿x軸滾動(dòng)(向左或向右均可),滾動(dòng)開始時(shí),點(diǎn)P位于原點(diǎn)處,設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),x∈R,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為m.
(1)寫出m的值并求出當(dāng)0≤x≤m時(shí),點(diǎn)P運(yùn)動(dòng)路徑的長(zhǎng)度l;
(2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達(dá)式;研究該函數(shù)的性質(zhì)并填寫下面表格:
函數(shù)性質(zhì) 結(jié)  論
奇偶性
偶函數(shù)
偶函數(shù)
單調(diào)性 遞增區(qū)間
[4k,4k+2],k∈z
[4k,4k+2],k∈z
遞減區(qū)間
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零點(diǎn)
x=4k,k∈z
x=4k,k∈z
(3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個(gè)數(shù)及相應(yīng)實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案