2.設(shè)a.R.求證:. 查看更多

 

題目列表(包括答案和解析)

設(shè)A、B、C分別是復(fù)數(shù)Z0=ai,Z1=
12
+bi,Z2=1+ci(其中a,b,c都是實數(shù))對應(yīng)的不共線的三點.
證明:曲線:Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t  (t∈R)與△ABC中平行于AC的中位線只有一個公共點,并求出此點.

查看答案和解析>>

設(shè)A、B、C分別是復(fù)數(shù)Z0=ai,Z1=
1
2
+bi,Z2=1+ci(其中a,b,c都是實數(shù))對應(yīng)的不共線的三點.
證明:曲線:Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t  (t∈R)與△ABC中平行于AC的中位線只有一個公共點,并求出此點.

查看答案和解析>>

設(shè)A、B、C分別是復(fù)數(shù)Z=ai,Z1=+bi,Z2=1+ci(其中a,b,c都是實數(shù))對應(yīng)的不共線的三點.
證明:曲線:Z=Zcos4t+2Z1cos2tsin2t+Z2sin4t  (t∈R)與△ABC中平行于AC的中位線只有一個公共點,并求出此點.

查看答案和解析>>

設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx};F:把平面上任意一點(a,b)映射為函數(shù)acosx+bsinx.

(1)證明:不存在兩個不同點對應(yīng)于同一個函數(shù);

(2)證明:當(dāng)f0(x)∈M時,f1(x)=f0(x+t)∈M,這里t為常數(shù);

(3)對于屬于M的一個固定值f0(x),得M1={f0(x+t),t∈R},在映射F的作用下,M1作為象,求其原象,并說明它是什么圖象?

查看答案和解析>>

設(shè)a、b∈R+,且a≠b.求證:a3+b3>a2b+ab2

查看答案和解析>>


同步練習(xí)冊答案