云南省2009年曲靖一中高考沖刺卷

文科數(shù)學(xué)(三)

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分150分,考試時(shí)間120分鐘.

第Ⅰ卷(選擇題,共60分)

一、選擇題:本大題共12小題.每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中.只

1.設(shè)集合,則

A.(1,2]                                                   B.[0,+)

C.                                             D.[0,2]

試題詳情

2.展開(kāi)式中的系數(shù)為

A.15                          B.60                          C.120                        D.240

試題詳情

3.若,則

A.              B.                     C.                     D.

試題詳情

4.若,則與的夾角的取值范圍是

A.                  B.                 C.                 D.

試題詳情

5.在等差數(shù)列中,有,則此數(shù)列的前13項(xiàng)之和為

A.24                       B.39                       C.52                         D.104

試題詳情

6.曲線在點(diǎn)處的切線的傾斜角為

A.150°                 B.135°                  C.60°                      D.45°

試題詳情

7.函數(shù)的最小值為

A.                     B.1                         C.                    D.

試題詳情

8.設(shè)偶函數(shù)在上為減函數(shù),且,則不等式的解

   集為

A.                                     B.

C.                                 D.

試題詳情

9.要得到函數(shù)的圖象,只需將函數(shù)的圖象

A.向左平移個(gè)長(zhǎng)度單位                                   B.向右平移個(gè)長(zhǎng)度單位

C.向左平移個(gè)長(zhǎng)度單位                             D.向右平移個(gè)長(zhǎng)度單位

試題詳情

10.若直線通過(guò)點(diǎn),則

A.                                               B.

C.                                             D.

試題詳情

11.已知四棱柱的底面為正方形,側(cè)棱與底面邊長(zhǎng)相等,在底面

   內(nèi)的射影為正方形的中心,則與底面所成角的正弦值等于

A.                      B.                      C.                   D.

試題詳情

12.若以連續(xù)擲兩骰子分別得到點(diǎn)數(shù)、作為點(diǎn)的坐標(biāo),則落在區(qū)域

    內(nèi)的概率為

A.                         B.                      C.                     D.

 

第Ⅱ卷(非選擇題,共90分)

按年級(jí)分層抽樣法了解學(xué)生的視力狀況,已知高一年級(jí)抽查了75人,則這次調(diào)查三個(gè)

年級(jí)共抽查了              人.

試題詳情

13.某校高一、高二、高三三個(gè)年級(jí)的學(xué)生數(shù)分別為1500人、1200人和1000人,現(xiàn)采用

14.某市擬從4個(gè)重點(diǎn)項(xiàng)目和6個(gè)一般項(xiàng)目各選2個(gè)項(xiàng)目作為本年度要啟動(dòng)的項(xiàng)目,則重點(diǎn)

項(xiàng)目和一般項(xiàng)目至少有一個(gè)被選中的不同選法的種數(shù)是             (用數(shù)字作

答).

試題詳情

15.設(shè)焦點(diǎn)在軸上的雙曲線的右準(zhǔn)線與兩條漸近線交于、兩點(diǎn),右焦點(diǎn)

    為,且,則雙曲線的離心率           

試題詳情

16.垂直于所在的平面,,當(dāng)?shù)?/p>

    面積攝大時(shí),點(diǎn)到直線的距離為             

試題詳情

三、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

17.(本小題滿分10分)

如圖、是單位圓上的點(diǎn),是圓與軸正半軸的交點(diǎn),點(diǎn)的坐標(biāo)為為正三角形.

(1)求的值;

(2)求的值;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

18.(本小題滿分12分)

試題詳情

因金融危機(jī),某公司的出口額下降,為此有關(guān)專家提出兩種促進(jìn)出口的方案,該方案需分兩年實(shí)施且相互獨(dú)立,該方案預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的1.0倍、0.9倍、0.8倍的概率分別為0.2、0.4、0.4;第二年可以使出口額為第一年的1.5倍、1.25倍,1.0倍的概率分別是0.3,0.3,0.4.

(1)求兩年后出口額恰好達(dá)到危機(jī)前出口額的概率;

       (2)求兩年后出口額超過(guò)危機(jī)前出口額的概率.

 

 

 

 

 

 

 

 

試題詳情

19.(本小題滿分12分)

四棱錐中,底面為矩形,側(cè)面為正三角形,為的中點(diǎn).

(1)證明:平面;

(2)求二面角的大小.

 

 

 

 

 

 

 

 

 

試題詳情

20.(本小題滿分12分)

       在個(gè)不同數(shù)的非列中,若時(shí),(即前面某數(shù)大于后面某數(shù)),稱與構(gòu)成一個(gè)逆序,一個(gè)排列的全部逆序的總數(shù)稱為該排列的逆序數(shù),記排列和逆序數(shù)為,如排列21的逆序數(shù),排列321的逆序數(shù),排列4321的逆序數(shù).

       (1)求,并寫出的表達(dá)式;

       (2)令,

       證明:

 

 

 

 

 

 

試題詳情

21.(本小題滿分12分)

       已知函數(shù)在點(diǎn)處取得極小值,使的的取值范圍是(1,3).

       (1)求的解析式;

       (2)當(dāng)時(shí),求的最大值.

 

 

 

 

 

 

 

試題詳情

22.(本小題滿分12分)

橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離以及離心率均為,直線與軸交于點(diǎn),與橢圓交于相異兩點(diǎn)、,且.

(1)求橢圓方程;

(2)若,求的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B

11.A     12.D

【解析】

1.,所以選B.

2.的系數(shù)是,所以選B.

3.,所以選.

4.為鈍角或,所以選C

5.,所以選C.

6.,所以選B.

7.,所以選D.

8.化為或,所以選B.

9.將左移個(gè)單位得,所以選A.

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫(huà)可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.

二、

13.185..

14.60..

15.,由,得

       .

16..如圖:

      

如圖,可設(shè),又,

       當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為.

三、

17.(1)由三角函數(shù)的定義知:.

       (2)

             

             

              .

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則.

       (2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則.

19.(1)設(shè)與交于點(diǎn).

             

             

             

              從而,即,又,且

              平面為正三角形,為的中點(diǎn),

              ,且,因此,平面.

       (2)平面,∴平面平面又,∴平面平面

              設(shè)為的中點(diǎn),連接,則,

              平面,過(guò)點(diǎn)作,連接,則.

              為二面角的平面角.

              在中,.

              又.

20.(1)       

             

       (2)

             

              又

             

             

              綜上:.

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

              由此得     

              時(shí),時(shí),

              在處取得極小值

                                         ③

        由式①、②、③聯(lián)立得:

        .

       (2)

           ∴當(dāng)時(shí),在上單調(diào)遞減,

        當(dāng)時(shí),

              當(dāng)時(shí),在[2,3]上單調(diào)遞增,

22.(1)由得

           ∴橢圓的方程為:.

(2)由得,

      

       又

設(shè)直線的方程為:

由得

              由此得.                                   ①

              設(shè)與橢圓的交點(diǎn)為,則

              由得

              ,整理得

              ,整理得

              時(shí),上式不成立,          ②

        由式①、②得

        或

        ∴取值范圍是.

 

 

 


同步練習(xí)冊(cè)答案