江蘇省漆橋中學(xué)2009年高三數(shù)學(xué)練習(xí)(4)

1.集合     

2.“”是“”的         條件.

3.在△ABC中,若(a+b+c)(b+c-a)=3bc,則A等于_______.

4.已知>0,若平面內(nèi)三點(diǎn)A(1,-),B(2,),C(3,)共線,則=___ ____.

5.已知為橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于A、B兩點(diǎn),若,則=___________.

6.閱讀如圖所示的程序框,若輸入的是100,則輸出的變量的值是        .

7已知t為常數(shù),函數(shù)在區(qū)間[0,3]上的最大值為2,則t=________.

8.已知點(diǎn)P在拋物線上,那么點(diǎn)P到點(diǎn)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為__    .

9.如圖,已知球O點(diǎn)面上四點(diǎn)A、B、C、D,DA平面ABC,

ABBC,DA=AB=BC=,則球O點(diǎn)體積等于___________.

10.定義:區(qū)間的長度為.已知函數(shù)定義域?yàn)?sub>,值域?yàn)?sub>,則區(qū)間的長度的最大值為           .

11.在平行四邊形中,交于點(diǎn)是線段中點(diǎn),的延長線與交于點(diǎn).若,,

__________.

12. 設(shè){an}是正項(xiàng)數(shù)列,其前n項(xiàng)和Sn滿足:4Sn=(an-1)(an+3),

則數(shù)列的通項(xiàng)公式=       .

13.若從點(diǎn)O所作的兩條射線OM、ON上分別有點(diǎn)、與點(diǎn)、,則三角形面積之比為:. 若從點(diǎn)O所作的不在同一個(gè)平面內(nèi)的三條射線OP、OQ和OR上分別有點(diǎn)、與點(diǎn)、、,則類似的結(jié)論為:__ 

 

14.某幾何體的一條棱長為,在該幾何體的正視圖中,這條棱的投影是長為的線段,在該幾何體的側(cè)視圖與俯視圖中,這條棱的投影分別是長為a和b的線段,則a+b的最大值為_______.                                                                                                    15.已知向量,,.

(1)若,求;(2)求的最大值.

 

 

 

 

 

16.如圖所示,在直四棱柱中,

DB=BC,,點(diǎn)是棱上一點(diǎn).

(1)求證:;(2)求證:;

(3)試確定點(diǎn)的位置,使得平面平面.

 

 

 

 

 

 

 

17.已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;

*(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

 

 

 

 

 

 

 

漆橋中學(xué)高三數(shù)學(xué)練習(xí)(4)

1. {1,2,3}; 2.充分非必要;3.; 4.;  5. 8;  6. (歷史) 5049; (物理) ; 7. 1; 8.9.;10.; 11.; 12.;13.;14. 4.

15. 解:(1)因?yàn)?sub>,所以…………(3分)

     得 (用輔助角得到同樣給分)              ………(5分)

     又,所以=           ……………………………………(7分)

(2)因?yàn)?sub>    ………………………(9分)

=                     …………………………………………(11分)

所以當(dāng)=時(shí), 的最大值為5+4=9               …………………(13分)

的最大值為3                     ………………………………………(14分)

16. (1)證明:由直四棱柱,得,

所以是平行四邊形,所以         …………………(3分)

,,所以  ………(4分)

(2)證明:因?yàn)?sub>, 所以       ……(6分)

又因?yàn)?sub>,且,所以    ……… ……(8分)

,所以               …………………………(9分)

(3)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面平面…………………(10分)

取DC的中點(diǎn)N,,連結(jié),連結(jié).

因?yàn)镹是DC中點(diǎn),BD=BC,所以;又因?yàn)镈C是面ABCD與面的交線,而面ABCD⊥面,

所以……………(12分)

又可證得,的中點(diǎn),所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M平面,

因?yàn)镺M?面DMC1,所以平面平面………………………(14分)

17. 解:(1)因?yàn)?sub>,所以c=1……………………(2分)

 則b=1,即橢圓的標(biāo)準(zhǔn)方程為…………………………(4分)

(2)因?yàn)?sub>(1,1),所以,所以,所以直線OQ的方程為y=-2x(6分)

又橢圓的左準(zhǔn)線方程為x=-2,所以點(diǎn)Q(-2,4) …………………………(7分)

所以,又,所以,即,

故直線與圓相切……………………………………………………(9分)

(3)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),直線與圓保持相切              ………(10分)

證明:設(shè)),則,所以,,

所以直線OQ的方程為                     ……………(12分)

所以點(diǎn)Q(-2,)                                    ……………… (13分)

所以,

,所以,即,故直線始終與圓相切……(15分)

 


同步練習(xí)冊(cè)答案