闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈嗙節閳ь剟鏌嗗鍛姦濡炪倖甯掗崐褰掑吹閳ь剟鏌f惔銏犲毈闁告瑥鍟悾宄扮暦閸パ屾闁诲函绲婚崝瀣уΔ鍛拺闁革富鍘奸崝瀣煕閵娿儳绉虹€规洘鍔欓幃娆忣啅椤旇棄鐦滈梻渚€娼ч悧鍡椢涘Δ鍐當闁稿本绮庣壕濂告煃瑜滈崜姘辩箔閻旂厧鐒垫い鎺嗗亾闁伙絽鍢查オ浼村醇椤愶絾娅嶉梻浣虹帛閸ㄩ潧螞濞嗘垟鍋撻棃娑氱劯婵﹥妞藉Λ鍐ㄢ槈濮橆剦鏆繝纰樻閸嬪懘銆冮崱娑樼疄闁靛⿴鐓堝Σ鍓х磽娴d粙鍝洪悽顖ょ節楠炲啴鍩¢崨顓狀槰闂佽偐鈷堥崗娑氭濠靛鈷掑ù锝堟鐢稑銆掑顓ф疁鐎规洘濞婇弫鎰板幢濡搫浼庨梻渚€鈧偛鑻晶鎾煛鐏炵偓绀嬬€规洜鍘ч埞鎴﹀炊閼哥楠忛梻鍌欑閹猜ゆ懌闂佸湱鎳撳ú顓烆嚕婵犳艾鐒洪柛鎰╁妿缁愮偤鏌h箛鏇炰沪闁搞劍绻傞埢浠嬵敂閸涱垳鐦堥梺闈涚箞閸ㄦ椽宕甸埀顒€鈹戦埥鍡椾簼缂佽鍊块幃鎯х暋閹佃櫕鏂€闂佺硶妾ч弲娑㈠箖閹达附鈷戠紒顖涙礀婢ф煡鏌涢弮鈧敮鐐烘嚍鏉堛劎绡€婵﹩鍘搁幏娲⒑閸涘﹦绠撻悗姘煎墴閸┾偓妞ゆ帊鐒﹂崐鎰版煙椤旂煫顏堝煘閹寸姭鍋撻敐鍛粵闁哄懏绮岄—鍐Χ閸℃顫囬梺绋匡攻椤ㄥ牊绔熼弴鐔洪檮缂佸娉曟鍥⒑閸撴彃浜濈紒瀣灦娣囧﹪鎮剧仦绋夸壕閻熸瑥瀚粈鈧梺娲诲墮閵堟悂宕洪埀顒併亜閹烘垵鏋ゆ繛鍏煎姈缁绘盯宕f径鍛窗闂佽桨绶¢崳锝夌嵁閹烘嚦鏃傗偓锝庡墰閳笺倖绻濋悽闈涒枅婵炰匠鍥舵晞闁圭増婢橀弸渚€鏌涢弴銊ョ仭闁绘挶鍨烘穱濠囶敍濞嗘帩鍔呭┑鈩冨絻閸㈡煡鈥︾捄銊﹀枂闁告洦鍓涢ˇ鏉库攽椤旂》鏀绘俊鐐舵閻g兘濡搁敂鍓х槇闂佸憡娲﹂崢鍓х玻濡ゅ懏鈷掑ù锝呮嚈閸︻厸鍋撳☉鎺撴珕缂佺粯绋掔换婵嬪炊瑜忛悾楣冩煟韫囨洖浠╃悮娆撴煛鐎n亪鍙勯柡宀€鍠栭獮鍡氼檨闁搞倗鍠栭弻娑橆潨閳ь剚绂嶇捄渚綎婵炲樊浜滄导鐘绘煕閺囥劌澧柛瀣Ч濮婃椽宕ㄦ繝鍐弳闂佹椿鍘奸崐鍧楃嵁閸愵煈娼ㄩ柍褜鍓熼獮鍐煛閸涱喖浠洪梺姹囧灮椤n喚妲愰弻銉︹拻濞达綀娅g敮娑㈡煟閻旀潙鐏茬€规洘鍨块獮妯肩磼濡厧骞堥梻渚€娼ф灙闁稿孩濞婂畷娲晲閸ワ絽浜炬繛鍫濈仢閺嬫稒銇勯銏℃暠濞e洤锕獮鏍ㄦ媴閸濄儱骞愰梻浣呵归張顒勬儗椤旀崘濮冲ù鐘差儐閳锋帒霉閿濆懏鍤堢憸鐗堝笒鐎氬銇勯幒鎴濃偓濠氭儗濞嗘挻鐓欓弶鍫熷劤閻︽粓鏌℃担绋库偓鍧楀蓟閵娾晜鍋嗛柛灞剧☉椤忥拷婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鈽夊Ο閿嬵潔濠殿喗顨呴悧濠囧极妤e啯鈷戦柛娑橈功閹冲啰绱掔紒姗堣€跨€殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倸螞椤撶倣娑㈠礋椤栨稈鎷洪梺鍛婄箓鐎氱兘宕曟惔锝囩<闁兼悂娼ч崫铏光偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備浇顕栭崹搴ㄥ礃閿濆棗鐦辩紓鍌氬€风欢锟犲闯椤曗偓瀹曞綊骞庨挊澶岊唹闂侀潧绻掓慨顓炍i崼銉︾厪闊洦娲栧暩濡炪倖鎸诲钘夘潖濞差亜浼犻柛鏇ㄥ亝濞堟粓姊虹粙娆惧剱闁圭懓娲璇测槈閵忕姈褔鏌涘☉鍗炵€虹憸鏃堝蓟閿涘嫪娌柛鎾楀嫬鍨卞┑鐘殿暜缁辨洟宕楀鈧妴浣糕枎閹炬潙浜楅柟鐓庣摠钃遍悗姘矙濮婂宕掑▎鎰偘濠碘剝銇滈崝搴e垝閸喐濯撮悹鍥ュ劜濡炰粙銆佸鈧慨鈧柣妯煎劋閹蹭即姊绘担鍛婃儓婵炴潙瀚Σ鎰板即閵忊€充痪闂侀€炲苯澧存慨濠冩そ瀹曨偊宕熼鈧粣娑㈡⒑缁嬪簱鐪嬮柛瀣攻娣囧﹪鎮滈懞銉︽珕闁哄鍋炴竟鍡涙儎鎼淬劍鈷掑ù锝囨嚀椤曟粍淇婇锛勭獢妞ゃ垺淇洪ˇ鏌ユ煃鐠囪尙孝妞ゆ挸鍚嬪鍕偓锝庡墮楠炲秵淇婇悙顏勨偓鏍ь潖婵犳碍鍋ら柡鍌氱氨閺嬫梹绻濇繝鍌涘櫝闁稿鎸鹃幉鎾礋椤掑偆妲版俊鐐€戦崝灞轿涘Δ鍜佹晪闁靛鏅涚粈瀣亜閹烘垵鈧鎯侀崼鐔虹閺夊牆澧介崚鏉款熆閻熷府宸ラ摶鐐寸節婵犲倻澧涢柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯澧存い銉︽尵閸掓帡宕奸悢铏规嚌闂侀€炲苯澧撮柣娑卞枟瀵板嫰骞囬鍌欑礈闂佺儵鍓濈敮濠囨倿閿曗偓椤啯绂掔€n亝鐎梺鍛婂姦閸犳牜澹曢崗鍏煎弿婵☆垵顕ч弫鍓х磼閸楃偛鑸归柍瑙勫灴閹晠顢欓懖鈺€绱橀梻浣虹《閺呮粓鎮ч悩鑼殾婵犻潧顑呴崡鎶芥煏韫囨洖孝鐎殿喚鍏樺娲濞戣鲸孝闂佸搫鎳忕划鎾诲箖閿熺姵鍋勯柛蹇氬亹閸樼敻姊绘笟鍥у伎缂佺姵鍨垮绋库槈閵忥紕鍘遍梺鍝勫€归娆撳磿閺冨牊鐓涢悘鐐垫櫕鏁堥梺鍝勮閸斿酣鍩€椤掑﹦绉靛ù婊呭仦鐎电厧鐣濋崟顑芥嫼闁荤姴娲犻埀顒冩珪閻忓牏绱撻崒姘毙㈤柨鏇ㄤ邯閹即顢欓悾宀€鎳濋梺閫炲苯澧撮柣娑卞櫍楠炴帒螖閳ь剛绮婚敐鍡欑瘈闁割煈鍋勬慨澶愭煃瑜滈崜婵嗏枍閺囩姵宕叉繝闈涱儐閸嬨劑姊婚崼鐔衡棩缂侇喖鐖煎娲偡閺夋寧姣愮紓浣虹帛閿氶柣锝呭槻閳规垿宕辫箛鏃傗偓濠氭⒑鐟欏嫬鍔ら柣銈呮喘楠炴寮撮姀鈾€鎷虹紓鍌欑劍钃遍柍閿嬪浮閺屾稑螣閻樺弶鍣介柣顓炴閺屾盯寮撮妸銉т画闂佺粯鎸哥换姗€寮诲☉銏╂晝闁挎繂娲ㄩ悾鍝勵渻閵堝啫鍔滅紒顔肩Ч婵$敻宕熼鍓ф澑闂侀潧顧€缁犳垿顢旈敓锟�

2009年高考數(shù)學(xué)難點(diǎn)突破專題輔導(dǎo)二十五

難點(diǎn)25  圓錐曲線綜合題

圓錐曲線的綜合問(wèn)題包括:解析法的應(yīng)用,與圓錐曲線有關(guān)的定值問(wèn)題、最值問(wèn)題、參數(shù)問(wèn)題、應(yīng)用題和探索性問(wèn)題,圓錐曲線知識(shí)的縱向聯(lián)系,圓錐曲線知識(shí)和三角、復(fù)數(shù)等代數(shù)知識(shí)的橫向聯(lián)系,解答這部分試題,需要較強(qiáng)的代數(shù)運(yùn)算能力和圖形認(rèn)識(shí)能力,要能準(zhǔn)確地進(jìn)行數(shù)與形的語(yǔ)言轉(zhuǎn)換和運(yùn)算,推理轉(zhuǎn)換,并在運(yùn)算過(guò)程中注意思維的嚴(yán)密性,以保證結(jié)果的完整.

●難點(diǎn)磁場(chǎng)

(★★★★)若橢圓6ec8aac122bd4f6e=1(ab>0)與直線lx+y=1在第一象限內(nèi)有兩個(gè)不同的交點(diǎn),求ab所滿足的條件,并畫出點(diǎn)P(a,b)的存在區(qū)域.

●案例探究

[例1]已知圓k過(guò)定點(diǎn)A(a,0)(a>0),圓心k在拋物線Cy2=2ax上運(yùn)動(dòng),MN為圓ky軸上截得的弦.

(1)試問(wèn)MN的長(zhǎng)是否隨圓心k的運(yùn)動(dòng)而變化?

(2)當(dāng)|OA|是|OM|與|ON|的等差中項(xiàng)時(shí),拋物線C的準(zhǔn)線與圓k有怎樣的位置關(guān)系?

命題意圖:本題考查圓錐曲線科內(nèi)綜合的知識(shí)及學(xué)生綜合、靈活處理問(wèn)題的能力,屬

★★★★★級(jí)題目.

知識(shí)依托:弦長(zhǎng)公式,韋達(dá)定理,等差中項(xiàng),絕對(duì)值不等式,一元二次不等式等知識(shí).

錯(cuò)解分析:在判斷dR的關(guān)系時(shí),x0的范圍是學(xué)生容易忽略的.

技巧與方法:對(duì)第(2)問(wèn),需將目標(biāo)轉(zhuǎn)化為判斷d=x0+6ec8aac122bd4f6eR=6ec8aac122bd4f6e的大小.

解:(1)設(shè)圓心k(x0,y0),且y02=2ax0,

k的半徑R=|AK|=6ec8aac122bd4f6e

∴|MN|=26ec8aac122bd4f6e=2a(定值)

∴弦MN的長(zhǎng)不隨圓心k的運(yùn)動(dòng)而變化.

(2)設(shè)M(0,y1)、N(0,y2)在圓k:(xx0)2+(yy0)2=x02+a2中,

x=0,得y2-2y0y+y02a2=0

y1y2=y02a2

∵|OA|是|OM|與|ON|的等差中項(xiàng).

∴|OM|+|ON|=|y1|+|y2|=2|OA|=2a.

又|MN|=|y1y2|=2a

∴|y1|+|y2|=|y1y2|

y1y2≤0,因此y02a2≤0,即2ax0a2≤0.

∴0≤x06ec8aac122bd4f6e.

圓心k到拋物線準(zhǔn)線距離d=x0+6ec8aac122bd4f6ea,而圓k半徑R=6ec8aac122bd4f6ea.

且上兩式不能同時(shí)取等號(hào),故圓k必與準(zhǔn)線相交.

[例2]如圖,已知橢圓6ec8aac122bd4f6e=1(2≤m≤5),過(guò)其左焦點(diǎn)且斜率為1的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)?i>A、B、C、D,設(shè)f(m)=||AB|-|CD||

(1)求f(m)的解析式;

(2)求f(m)的最值.

6ec8aac122bd4f6e

命題意圖:本題主要考查利用解析幾何的知識(shí)建立函數(shù)關(guān)系式,并求其最值,體現(xiàn)了圓錐曲線與代數(shù)間的科間綜合.屬★★★★★級(jí)題目.

知識(shí)依托:直線與圓錐曲線的交點(diǎn),韋達(dá)定理,根的判別式,利用單調(diào)性求函數(shù)的最值.

錯(cuò)解分析:在第(1)問(wèn)中,要注意驗(yàn)證當(dāng)2≤m≤5時(shí),直線與橢圓恒有交點(diǎn).

技巧與方法:第(1)問(wèn)中,若注意到xA,xD為一對(duì)相反數(shù),則可迅速將||AB|-|CD||化簡(jiǎn).第(2)問(wèn),利用函數(shù)的單調(diào)性求最值是常用方法.

解:(1)設(shè)橢圓的半長(zhǎng)軸、半短軸及半焦距依次為a、b、c,則a2=m,b2=m-1,c2=a2b2=1

∴橢圓的焦點(diǎn)為F1(-1,0),F2(1,0).

故直線的方程為y=x+1,又橢圓的準(zhǔn)線方程為x6ec8aac122bd4f6e,即xm.

A(-m,-m+1),D(m,m+1)

考慮方程組6ec8aac122bd4f6e,消去y得:(m-1)x2+m(x+1)2=m(m-1)

整理得:(2m-1)x2+2mx+2mm2=0

Δ=4m2-4(2m-1)(2mm2)=8m(m-1)2

∵2≤m≤5,∴Δ>0恒成立,xB+xC=6ec8aac122bd4f6e.

又∵AB、C、D都在直線y=x+1上

∴|AB|=|xBxA|=6ec8aac122bd4f6e=(xBxA)?6ec8aac122bd4f6e,|CD|=6ec8aac122bd4f6e(xDxC)

∴||AB|-|CD||=6ec8aac122bd4f6e|xBxA+xDxC|=6ec8aac122bd4f6e|(xB+xC)-(xA+xD)|

又∵xA=-m,xD=m,∴xA+xD=0

∴||AB|-|CD||=|xB+xC|?6ec8aac122bd4f6e=|6ec8aac122bd4f6e|?6ec8aac122bd4f6e=6ec8aac122bd4f6e (2≤m≤5)

f(m)=6ec8aac122bd4f6e,m∈[2,5].

(2)由f(m)=6ec8aac122bd4f6e,可知f(m)=6ec8aac122bd4f6e

又2-6ec8aac122bd4f6e≤2-6ec8aac122bd4f6e≤2-6ec8aac122bd4f6e

f(m)∈[6ec8aac122bd4f6e

f(m)的最大值為6ec8aac122bd4f6e,此時(shí)m=2;f(m)的最小值為6ec8aac122bd4f6e,此時(shí)m=5.

[例3]艦A在艦B的正東6千米處,艦C在艦B的北偏西30°且與B相距4千米,它們準(zhǔn)備捕海洋動(dòng)物,某時(shí)刻A發(fā)現(xiàn)動(dòng)物信號(hào),4秒后BC同時(shí)發(fā)現(xiàn)這種信號(hào),A發(fā)射麻醉炮彈.設(shè)艦與動(dòng)物均為靜止的,動(dòng)物信號(hào)的傳播速度為1千米/秒,炮彈的速度是6ec8aac122bd4f6e千米/秒,其中g為重力加速度,若不計(jì)空氣阻力與艦高,問(wèn)艦A發(fā)射炮彈的方位角和仰角應(yīng)是多少?

命題意圖:考查圓錐曲線在實(shí)際問(wèn)題中的應(yīng)用,及將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題的能力,屬★★★★★級(jí)題目.

知識(shí)依托:線段垂直平分線的性質(zhì),雙曲線的定義,兩點(diǎn)間的距離公式,斜拋運(yùn)動(dòng)的曲線方程.

錯(cuò)解分析:答好本題,除要準(zhǔn)確地把握好點(diǎn)P的位置(既在線段BC的垂直平分線上,又在以A、B為焦點(diǎn)的拋物線上),還應(yīng)對(duì)方位角的概念掌握清楚.

技巧與方法:通過(guò)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,將實(shí)際問(wèn)題轉(zhuǎn)化成解析幾何問(wèn)題來(lái)求解.對(duì)空間物體的定位,一般可利用聲音傳播的時(shí)間差來(lái)建立方程.

解:取AB所在直線為x軸,以AB的中點(diǎn)為原點(diǎn),建立如圖所示的直角坐標(biāo)系.由題意可知,A、BC艦的坐標(biāo)為(3,0)、(-3,0)、(-5,26ec8aac122bd4f6e).

6ec8aac122bd4f6e

由于B、C同時(shí)發(fā)現(xiàn)動(dòng)物信號(hào),記動(dòng)物所在位置為P,則|PB|=|PC|.于是P在線段BC的中垂線上,易求得其方程為6ec8aac122bd4f6ex-3y+76ec8aac122bd4f6e=0.

又由A、B兩艦發(fā)現(xiàn)動(dòng)物信號(hào)的時(shí)間差為4秒,知|PB|-|PA|=4,故知P在雙曲線6ec8aac122bd4f6e=1的右支上.

直線與雙曲線的交點(diǎn)為(8,56ec8aac122bd4f6e),此即為動(dòng)物P的位置,利用兩點(diǎn)間距離公式,可得|PA|=10.

據(jù)已知兩點(diǎn)的斜率公式,得kPA=6ec8aac122bd4f6e,所以直線PA的傾斜角為60°,于是艦A發(fā)射炮彈的方位角應(yīng)是北偏東30°.

設(shè)發(fā)射炮彈的仰角是θ,初速度v0=6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

∴sin2θ=6ec8aac122bd4f6e,∴仰角θ=30°.

●錦囊妙計(jì)

解決圓錐曲線綜合題,關(guān)鍵是熟練掌握每一種圓錐曲線的定義、標(biāo)準(zhǔn)方程、圖形與幾何性質(zhì),注意挖掘知識(shí)的內(nèi)在聯(lián)系及其規(guī)律,通過(guò)對(duì)知識(shí)的重新組合,以達(dá)到鞏固知識(shí)、提高能力的目的.

(1)對(duì)于求曲線方程中參數(shù)的取值范圍問(wèn)題,需構(gòu)造參數(shù)滿足的不等式,通過(guò)求不等式(組)求得參數(shù)的取值范圍;或建立關(guān)于參數(shù)的目標(biāo)函數(shù),轉(zhuǎn)化為函數(shù)的值域.

(2)對(duì)于圓錐曲線的最值問(wèn)題,解法常有兩種:當(dāng)題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,可考慮利用數(shù)形結(jié)合法解;當(dāng)題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.

●殲滅難點(diǎn)訓(xùn)練

一、選擇題

1.(★★★★)已知A、BC三點(diǎn)在曲線y=6ec8aac122bd4f6e上,其橫坐標(biāo)依次為1,m,4(1<m<4),當(dāng)△ABC的面積最大時(shí),m等于(    )

試題詳情

A.3                       B.6ec8aac122bd4f6e                                   C.6ec8aac122bd4f6e                                   D.6ec8aac122bd4f6e

試題詳情

2.(★★★★★)設(shè)u,vR,且|u|≤6ec8aac122bd4f6e,v>0,則(uv)2+(6ec8aac122bd4f6e)2的最小值為(    )

試題詳情

A.4                       B.2                              C.8                              D.26ec8aac122bd4f6e

試題詳情

二、填空題

3.(★★★★★)A是橢圓長(zhǎng)軸的一個(gè)端點(diǎn),O是橢圓的中心,若橢圓上存在一點(diǎn)P,使

試題詳情

OPA=6ec8aac122bd4f6e,則橢圓離心率的范圍是_________.

試題詳情

4.(★★★★)一輛卡車高3米,寬1.6米,欲通過(guò)拋物線形隧道,拱口寬恰好是拋物線的通徑長(zhǎng),若拱口寬為a米,則能使卡車通過(guò)的a的最小整數(shù)值是_________.

試題詳情

5.(★★★★★)已知拋物線y=x2-1上一定點(diǎn)B(-1,0)和兩個(gè)動(dòng)點(diǎn)P、Q,當(dāng)P在拋物線上運(yùn)動(dòng)時(shí),BPPQ,則Q點(diǎn)的橫坐標(biāo)的取值范圍是_________.

試題詳情

三、解答題

6.(★★★★★)已知直線y=kx-1與雙曲線x2y2=1的左支交于A、B兩點(diǎn),若另一條直線l經(jīng)過(guò)點(diǎn)P(-2,0)及線段AB的中點(diǎn)Q,求直線ly軸上的截距b的取值范圍.

試題詳情

7.(★★★★★)已知拋物線Cy2=4x.

(1)若橢圓左焦點(diǎn)及相應(yīng)的準(zhǔn)線與拋物線C的焦點(diǎn)F及準(zhǔn)線l分別重合,試求橢圓短軸端點(diǎn)B與焦點(diǎn)F連線中點(diǎn)P的軌跡方程;

(2)若M(m,0)是x軸上的一定點(diǎn),Q是(1)所求軌跡上任一點(diǎn),試問(wèn)|MQ|有無(wú)最小值?若有,求出其值;若沒有,說(shuō)明理由.

試題詳情

6ec8aac122bd4f6e8.(★★★★★)如圖,6ec8aac122bd4f6e為半圓,AB為半圓直徑,O為半圓圓心,且ODABQ為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

試題詳情

(2)過(guò)D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且MD、N之間,設(shè)6ec8aac122bd4f6e=λ,求λ的取值范圍.

[學(xué)法指導(dǎo)]怎樣學(xué)好圓錐曲線

圓錐曲線將幾何與代數(shù)進(jìn)行了完美結(jié)合.借助純代數(shù)的解決手段研究曲線的概念和性質(zhì)及直線與圓錐曲線的位置關(guān)系,從數(shù)學(xué)家笛卡爾開創(chuàng)了坐標(biāo)系那天就已經(jīng)開始.

高考中它依然是重點(diǎn),主客觀題必不可少,易、中、難題皆有.為此需要我們做到:

試題詳情

1.重點(diǎn)掌握橢圓、雙曲線、拋物線的定義和性質(zhì).這些都是圓錐曲線的基石,高考中的題目都涉及到這些內(nèi)容.

試題詳情

2.重視求曲線的方程或曲線的軌跡,此處作為高考解答題的命題對(duì)象難度較大.所以要掌握住一般方法:定義法、直接法、待定系數(shù)法、相關(guān)點(diǎn)法、參數(shù)法等.

試題詳情

3.加強(qiáng)直線與圓錐曲線的位置關(guān)系問(wèn)題的復(fù)習(xí).此處一直為高考的熱點(diǎn).這類問(wèn)題常涉及到圓錐曲線的性質(zhì)和直線的基本知識(shí)點(diǎn)、線段的中點(diǎn)、弦長(zhǎng)、垂直問(wèn)題,因此分析問(wèn)題時(shí)利用數(shù)形結(jié)合思想和設(shè)而不求法與弦長(zhǎng)公式及韋達(dá)定理聯(lián)系去解決.這樣加強(qiáng)了對(duì)數(shù)學(xué)各種能力的考查.

試題詳情

4.重視對(duì)數(shù)學(xué)思想、方法進(jìn)行歸納提煉,達(dá)到優(yōu)化解題思維、簡(jiǎn)化解題過(guò)程.

(1)方程思想

解析幾何的題目大部分都以方程形式給定直線和圓錐曲線,因此把直線與圓錐曲線相交的弦長(zhǎng)問(wèn)題利用韋達(dá)定理進(jìn)行整體處理,就簡(jiǎn)化解題運(yùn)算量.

(2)用好函數(shù)思想方法

對(duì)于圓錐曲線上的一些動(dòng)點(diǎn),在變化過(guò)程中會(huì)引入一些相互聯(lián)系、相互制約的量,從而使一些線的長(zhǎng)度及a,b,c,e之間構(gòu)成函數(shù)關(guān)系,函數(shù)思想在處理這類問(wèn)題時(shí)就很有效.

(3)掌握坐標(biāo)法

坐標(biāo)法是解決有關(guān)圓錐曲線問(wèn)題的基本方法.近幾年都考查了坐標(biāo)法,因此要加強(qiáng)坐標(biāo)法的訓(xùn)練.

 

試題詳情

難點(diǎn)磁場(chǎng)

解:由方程組6ec8aac122bd4f6e消去y,整理得(a2+b2)x2-2a2x+a2(1-b2)=0                      ①

則橢圓與直線l在第一象限內(nèi)有兩個(gè)不同的交點(diǎn)的充要條件是方程①在區(qū)間(0,1)內(nèi)有兩相異實(shí)根,令f(x)=(a2+b2)x2-2a2x+a2(1-b2),則有

6ec8aac122bd4f6e

同時(shí)滿足上述四個(gè)條件的點(diǎn)P(a,b)的存在區(qū)域?yàn)橄聢D所示的陰影部分:

6ec8aac122bd4f6e

殲滅難點(diǎn)訓(xùn)練

一、1.解析:由題意知A(1,1),B(m,6ec8aac122bd4f6e),C(4,2).

直線AC所在方程為x-3y+2=0,

點(diǎn)B到該直線的距離為d=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

m∈(1,4),∴當(dāng)6ec8aac122bd4f6e時(shí),SABC有最大值,此時(shí)m=6ec8aac122bd4f6e.

答案:B

2.解析:考慮式子的幾何意義,轉(zhuǎn)化為求圓x2+y2=2上的點(diǎn)與雙曲線xy=9上的點(diǎn)的距離的最小值.

答案:C

二、3.解析:設(shè)橢圓方程為6ec8aac122bd4f6e=1(ab>0),以OA為直徑的圓:x2ax+y2=0,兩式聯(lián)立消y6ec8aac122bd4f6ex2ax+b2=0.即e2x2ax+b2=0,該方程有一解x2,一解為a,由韋達(dá)定理x2=6ec8aac122bd4f6ea,0<x2a,即0<6ec8aac122bd4f6eaa6ec8aac122bd4f6ee<1.

答案:6ec8aac122bd4f6ee<1

4.解析:由題意可設(shè)拋物線方程為x2=-ay,當(dāng)x=6ec8aac122bd4f6e時(shí),y=-6ec8aac122bd4f6e;當(dāng)x=0.8時(shí),y=-6ec8aac122bd4f6e.由題意知6ec8aac122bd4f6e≥3,即a2-12a-2.56≥0.解得a的最小整數(shù)為13.

答案:13

5.解析:設(shè)P(t,t2-1),Q(s,s2-1)

BPPQ,∴6ec8aac122bd4f6e=-1,

t2+(s-1)ts+1=0

tR,∴必須有Δ=(s-1)2+4(s-1)≥0.即s2+2s-3≥0,

解得s≤-3或s≥1.

答案:(-∞,-36ec8aac122bd4f6e6ec8aac122bd4f6e1,+∞)

三、6.解:設(shè)A(x1,y1),B(x2,y2).

6ec8aac122bd4f6e,得(1-k2x2+2kx-2=0,

又∵直線AB與雙曲線左支交于AB兩點(diǎn),

故有6ec8aac122bd4f6e

解得-6ec8aac122bd4f6ek<-1

6ec8aac122bd4f6e

7.解:由拋物線y2=4x,得焦點(diǎn)F(1,0),準(zhǔn)線lx=-1.

(1)設(shè)P(x,y),則B(2x-1,2y),橢圓中心O′,則|FO′|∶|BF|=e,又設(shè)點(diǎn)Bl的距離為d,則|BF|∶d=e,∴|FO′|∶|BF|=|BF|∶d,即(2x-2)2+(2y)2=2x(2x-2),化簡(jiǎn)得P點(diǎn)軌跡方程為y2=x-1(x>1).

(2)設(shè)Q(x,y),則|MQ|=6ec8aac122bd4f6e6ec8aac122bd4f6e?

(?)當(dāng)m6ec8aac122bd4f6e≤1,即m6ec8aac122bd4f6e時(shí),函數(shù)t=[x-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6e在(1,+∞)上遞增,故t無(wú)最小值,亦即|MQ|無(wú)最小值.

(?)當(dāng)m6ec8aac122bd4f6e>1,即m6ec8aac122bd4f6e時(shí),函數(shù)t=[x2-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6ex=m6ec8aac122bd4f6e處有最小值m6ec8aac122bd4f6e,∴|MQ|min=6ec8aac122bd4f6e.

8.解:(1)以AB、OD所在直線分別為x軸、y軸,O為原點(diǎn),建立平面直角坐標(biāo)系,?

∵|PA|+|PB|=|QA|+|QB|=26ec8aac122bd4f6e>|AB|=4.

∴曲線C為以原點(diǎn)為中心,AB為焦點(diǎn)的橢圓.

設(shè)其長(zhǎng)半軸為a,短半軸為b,半焦距為c,則2a=26ec8aac122bd4f6e,∴a=6ec8aac122bd4f6e,c=2,b=1.

∴曲線C的方程為6ec8aac122bd4f6e+y2=1.

(2)設(shè)直線l的方程為y=kx+2,

代入6ec8aac122bd4f6e+y2=1,得(1+5k2)x2+20kx+15=0.

Δ=(20k)2-4×15(1+5k2)>0,得k26ec8aac122bd4f6e.由圖可知6ec8aac122bd4f6e=λ

6ec8aac122bd4f6e

由韋達(dá)定理得6ec8aac122bd4f6e

x1=λx2代入得

6ec8aac122bd4f6e

兩式相除得6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e                             ①

6ec8aac122bd4f6eMD、N中間,∴λ<1                                                             ②

又∵當(dāng)k不存在時(shí),顯然λ=6ec8aac122bd4f6e (此時(shí)直線ly軸重合).

 

 


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倿骞夊☉銏犵缂備焦岣块崢閬嶆⒑闂堟稓澧曢柟鍐查叄椤㈡棃顢橀姀锛勫幐闁诲繒鍋犻褔鍩€椤掍胶绠撻柣锝囧厴椤㈡洟鏁冮埀顒€鏁梻浣瑰濡焦鎱ㄩ妶澶嬪剨閹肩补妾ч弨浠嬫煟閹邦剚鈻曢柛銈囧枎閳规垿顢欓悙顒佹瘓闂佺娅曠换鍐Χ閿濆绀冮柕濞у啫绠i梻鍌欒兌閹虫捇顢氶銏犵;婵炴垶姘ㄦ稉宥夋煟濡偐甯涢柍閿嬪灩缁辨帞鈧綆浜滈惃锟犳煛閳ь剛绱掑Ο闀愮盎闂侀潧枪閸庢煡藟閵忊槅娈介柣鎰皺婢э箑鈹戦埄鍐憙妞わ富鍣i弻娑氣偓锝庡亝瀹曞本淇婇銏犳殭闁宠棄顦埢搴ょ疀閺冣偓閻eジ姊虹拠鍙夊攭妞ゎ偄顦叅闁哄诞灞芥闂佸壊鍋呭ú鏍不閻愮儤鐓忓┑鐐茬仢閸斿瓨绻涢幘鎰佺吋闁诡喖缍婂畷鍫曨敂閸曨厼顦╁┑鐘灱椤煤閻斿娼栫紓浣股戞刊鎾煣韫囨洘鍤€缂佹せ鍓濈换娑㈠箻鐎靛壊鏆″銈冨妼閿曘倝鎮鹃悜钘夌骇閹煎瓨鎸婚~宥呪攽椤旂煫顏囥亹婢跺瞼绠斿璺号堥弨浠嬫煟閹邦厽缍戦柣蹇ョ畵閹筹綁濡堕崱鏇犵畾闂佸湱绮敮鐐存櫠濞戞氨纾肩紓浣贯缚濞插鈧娲栧畷顒冪亽闂佸憡绻傜€氬嘲岣块弮鈧穱濠囨倷椤忓嫧鍋撻弴鐘冲床闁圭儤顨呯粣妤呮煛瀹擃喖鏈紞搴g磽閸屾瑧鍔嶉拑鍗炩攽椤栨稒灏﹂柡灞诲€濋獮渚€骞掗幋婵喰戦梻渚€娼уΛ妤呮晝椤忓嫷娼栨繛宸簼椤ュ牓鏌嶉崫鍕殶閼叉牜绱撻崒娆掑厡濠殿喚鏁婚獮鎴﹀炊椤掍礁浠掑銈嗘濞夋洟鎮块埀顒€鈹戦悙鏉戠仸闁荤噦绠戦埢宥夊閵堝棌鎷洪柣鐘充航閸斿苯鈻嶉幇鐗堢厵闁告垯鍊栫€氾拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘挸绀夐柕鍫濇川绾剧晫鈧箍鍎遍幏鎴︾叕椤掑倵鍋撳▓鍨灈妞ゎ厾鍏橀獮鍐閵堝懐顦ч柣蹇撶箲閻楁鈧矮绮欏铏规嫚閺屻儱寮板┑鐐板尃閸曨厾褰炬繝鐢靛Т娴硷綁鏁愭径妯绘櫓闂佸憡鎸嗛崪鍐簥闂傚倷鑳剁划顖炲礉閿曞倸绀堟繛鍡樺灩閻棝鏌涢幇銊︽澓濞存粍绮撻弻锟犲炊瑜庨ˉ婊勭箾鐏炲倸鈧繈骞冮垾鎰佹建闁逞屽墴瀵鎮㈤崨濠勭Ф婵°倧绲介崯顖烆敁瀹ュ鈷戠紒瀣儥閸庢劙鏌涢弮鈧悷鈺侇嚕鐠囨祴妲堟俊顖炴敱閻庡妫呴銏$カ缂佽尙鍋撻弲銉╂⒒閸屾瑦绁版い鏇熺墵瀹曟澘螖閸涱喖浠悷婊冪箰鍗遍柟鐗堟緲缁犲鎮楀☉娅亪顢撻幘缁樷拺闁告稑锕︾粻鎾绘倵濮樺崬鍘撮柛鈹惧亾濡炪倖宸婚崑鎾绘煟椤撶偛鈧灝顕g拠娴嬫闁靛繒濮堥埡鍛厪濠㈣鍨伴崯浼村储娴犲鐓熼幖娣焺閸熷繘鏌涢悩宕囧⒌闁炽儻绠撻弻銊р偓锝傛櫇缁犳岸姊鸿ぐ鎺擄紵缂佲偓娓氣偓閹€斥槈閵忥紕鍘遍柣蹇曞仜婢т粙鎮¢婊呯<闁靛ǹ鍊楅惌娆愭叏婵犲嫮甯涢柟宄版嚇瀹曘劑妫冨☉姘毙ㄩ悗娈垮枤閺佸銆佸Δ鍛<婵犲﹤鎳愰崢顖炴⒒娴d警鏀伴柟娲讳簽閳ь剟娼ч惌鍌氼嚕椤愶箑纾奸柣鎰嚟閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷