安徽省2009年高考全真模擬試卷
數(shù)學(xué)(文科)試題
題 號
一
二
三
得 分
注意事項:
1.本試題分為第Ⅰ卷和第Ⅱ卷兩部分,滿分150分,考試時間為120分鐘.
2.答第Ⅰ卷前務(wù)必將自己的姓名、考號、考試科目涂寫在答題卡上.考試結(jié)束,試題和答題卡一并收回.
3.第Ⅰ卷每題選出答案后,都必須用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(ABCD)涂黑,如需改動,必須先用橡皮擦干凈,再改涂其它答案.
第Ⅰ卷(共60分)
參考公式:
球的表面積公式:S=4πR2,其中R是球的半徑.
如果事件A在一次試驗中發(fā)生的概率是p,那么n次獨立重復(fù)試驗中事件A恰好發(fā)生k次的概率:
Pn(k)=Cpk(1-p)n-k(k=0,1,2,…,n).
如果事件A、B互斥,那么P(A+B)=P(A)+P(B).
如果事件A、B相互獨立,那么P(AB)=P(A)?P(B).
一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的.
1.已知集合都是非空集合,則“”是“且”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D. 既不是充分條件,也不是必要條件
2.已知函數(shù)的一個零點在內(nèi),則實數(shù)的取值范圍是( )
A. B. C. D.
3.已知是虛數(shù)單位,則復(fù)數(shù)的模為 ( )
A.1 B. C. D.
4.在正方體ABCD-A1B
成角的正切值為 ( 。
A. B.
C.1 D.
5.直線與圓相交于兩點M、N, 若滿足, 則?(O為坐標(biāo)原點)等于 ( )
A. -2 B.
-
6.若函數(shù),的表達(dá)式是( )
A.
B.
C.
D.
7.已知函數(shù)在上是增函數(shù),,
若,則的取值范圍是 ( )
A. B.
C. D.
8.右面的程序框圖,如果輸入三個實數(shù)a、b、c,要求
輸出這三個數(shù)中最大的數(shù),那么在空白的判斷框中,
應(yīng)該填入下面四個選項中的 ( )
A.c > x B.x > c
C.c > b D.b > c
9.直線將圓分成四塊,用種不同的顏料涂色,要求共邊的兩塊顏色互異,每塊只涂一色,則不同的涂色方案共有 ( )
A.240
B.
10.對于方程:,有如下幾種說法:
①該曲線關(guān)于x軸對稱; ②該曲線關(guān)于y軸對稱;
③該曲線關(guān)于原點對稱; ④該曲線是一個封閉圖形且面積大于π。
其中正確命題的序號為 ( )
A.①② B.②③ C.①②③ D.①②③④
11.在正方體ABCDA1B
A.不存在 B.有且只有兩條
C.有且只有三條 D.有無數(shù)條
12.已知A、B兩地之間有6條網(wǎng)線并聯(lián),這6條網(wǎng)線能通過的信息量分別為1,1,2,2,3,3.現(xiàn)從中任取3條網(wǎng)線,設(shè)可通過的信息量為X,當(dāng)X≥6時,可保證線路信息暢通(通過的信息量X為三條網(wǎng)線上信息量之和),則線路信息暢通的概率為 ( )
A. B. C. D.
第Ⅱ卷(非選擇題 共90分)
二、填空題:本大題共4小題,每小題4分,共16分.將答案填在題中的橫線上.
13.已知,,則______.
14. 設(shè),其中滿足若的最大值為6,則的最小值為 .
15.設(shè)是二次函數(shù),方程有兩個相等的實根,且,___.
16.已知命題:橢圓與雙曲線的焦距相等.試將此命題推廣到一般情形,使已知命題成為推廣后命題的一個特例: .
三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
17.(本小題滿分12分)
在四邊形ABCD中, BD是它的一條對角線,且,
,.⑴若△BCD是直角三形,求的值;⑵在⑴的條件下,求.
18.(本小題滿分12分)
已知某種植物種子每粒成功發(fā)芽的概率都是,一個植物研究所進(jìn)行該種子的發(fā)芽實驗,每次實驗種一粒種子,假定某次實驗中,種子發(fā)芽則稱該次實驗是成功的,種子沒有發(fā)芽則稱該次實驗是失敗的.
(Ⅰ)若該研究所做了三次實驗,求至少兩次實驗成功的概率;
(Ⅱ)若該研究進(jìn)行實驗,到成功了4次為止,求在第4次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.
19.(本小題滿分12分)
如圖,正三棱錐S―ABC中,底面的邊長是3,棱錐的側(cè)面積等于底面積的2倍,M是BC的中點.求:
(Ⅰ)的值;
(Ⅱ)二面角S―BC―A的大;
(Ⅲ)正三棱錐S―ABC的體積.
20.(本小題滿分12分)
已知數(shù)列,其中為實數(shù),為正整數(shù).
(Ⅰ)證明:當(dāng)
(Ⅱ)設(shè)為數(shù)列的前n項和,是否存在實數(shù),使得對任意正整數(shù)n,都有 若存在,求的取值范圍;若不存在,說明理由.
21.(本小題滿分12分)
設(shè)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅰ)求之間的關(guān)系式;
(Ⅱ)若在處取得極小值,求的解析式;
(Ⅲ)當(dāng)時,若在上為單調(diào)函數(shù)?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
22.(本小題滿分14分)
已知橢圓,它的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點為,左準(zhǔn)線為,動直線垂直于直線,垂足為點,線段的垂直平分線交于點,求動點的軌跡的方程;
(Ⅲ)將曲線向右平移2個單位得到曲線,設(shè)曲線的準(zhǔn)線為,焦點為,過作直線交曲線于兩點,過點作平行于曲線的對稱軸的直線,若,試證明三點(為坐標(biāo)原點)在同一條直線上.
一、選擇題:
1.解析:B.由且能夠推出;反之,由只能推出或,而不能推出且.故“”是“且”的必要不充分條件,故選B.
評析:有關(guān)充要條件的判定問題,概念性較強(qiáng),進(jìn)行判斷時,必須緊扣概念.一方面,要正確理解充要條件本身的概念,進(jìn)行雙向推理,準(zhǔn)確判斷;另一方面,還要注意根據(jù)具體問題所涉及到的數(shù)學(xué)概念來思考.本題中,弄清并集和交集概念中“或”與“且”的關(guān)系顯得很重要.
2.解析:B.∵△=.要使函數(shù)的一個零點在內(nèi),必須滿足條件:,即,
∴,∴實數(shù)k的取值范圍為(2,3).
3.解析:D.化簡復(fù)數(shù)可得,∴,
故選D.
4.解析:B 先作出直線A1B與平面BC1D1所成角,再通過解三角形求出其正切值.如圖,連結(jié)交 于,連結(jié).由,,又,得,所以就是直線A1B與平面BC1D1所成角.在直角中,求得,故選B.
評析:平面的斜線與平面所成的角,就是這條斜線與它在該平面上
的射影所成的銳角,根據(jù)題目的條件作出斜線在該平面上的射影
是實現(xiàn)解題的關(guān)鍵,而作射影的關(guān)鍵則是作出平面的垂線,要注
意面面垂直的性質(zhì)在作平面的垂線時的應(yīng)用.
5.解析: A.特值法.取B=0,A=1,C=-1,則M(1,),
N(1,-), ∴= x1x2+y1y2 =-2.故選A .
6.解析 B.設(shè)點是函數(shù)上的任意一點,點關(guān)于點的對稱點為,則由在上,
得,∴,即.故選B.
7.解析: C.圖象法.由的圖象可得,在上是增函數(shù),在上是減函數(shù),又是偶函數(shù),∴,
∴,解得.故選C.
8.解析:B,由,得:,即,
解之得,由于,故;選B
9.解析: B.如果四塊均不同色,則有種涂法;如果有且僅有兩塊同色,它們必是相對的兩塊,有種涂法;如果兩組相對的兩塊分別同色,則有種涂法.根據(jù)分類計數(shù)原理,得到涂色方法種數(shù)為(種),故選B.
10.解析:選D.①②③易于判斷其真。.
,即曲線上任一點P(x,y)在單位圖外,(點(±1,0)在圓上),
則S>π?12=π
評析:f(x,y)=f(x,-y)曲線f(x,y)=0,關(guān)于x軸對稱;
f(x,y)=f(-x, y)曲線f(x,y)=0,關(guān)于y軸對稱;
f(x,y)=f(-x, -y)曲線f(x,y)=0,關(guān)于原點對稱。
11.解析:D,在EF上任意取一點M,直線與M確定一個平面,
這個平面與CD有且僅有1個交點N, 當(dāng)M取不同的位置就確
定不同的平面,從而與CD有不同的交點N,而直線MN與這
3條異面直線都有交點的.如右圖:
評析:本題主要考查立體幾何中空間直線相交問題,考查學(xué)生
的空間想象能力。
12.解析:C.P(X=8)=,P(X=7)=,
P(X=6)=, 所以P(X≥6)=,
即線路信息暢通的概率為,故選C.
二、填空題:
13.解析:.由,得,即,又由,得,∴,
于是,
.
14. 解析:.如圖,過點,.
在點處取得最小值,點在直線
上,,∴.
評析:簡單的線性規(guī)劃問題,其約束條件是平面上的一個
多邊形閉區(qū)域,或者是向某一方向無限延展的半閉區(qū)域,而目標(biāo)函數(shù)一般在邊界的頂點處取得最值.解題時通常運用圖解法,根據(jù)題意畫出圖形,從圖形中尋求思路、獲得答案,體現(xiàn)了數(shù)形結(jié)合的思想方法.
15.解析:f(x)=x2+2x+1 .設(shè)f(x)=ax2+bx+c
(a≠0),則△=b2-
∴,故 f(x)=x2+2x+1 .
16.解析:橢圓與雙曲線的焦距相等.由橢圓與雙曲線的焦距相等,分析橢圓和雙曲線的標(biāo)準(zhǔn)方程中參數(shù)之間的關(guān)系,運用類比推理的方法,不難得到推廣后的一個命題為:橢圓與雙曲線的焦距相等.
評析:推廣命題有多種方法,其中類比推理是一種常用方法.值得指出的是,本題的答案不唯一,例如,我們還可以得到推廣后的更具一般性的命題:橢圓與雙曲線 的焦距相等.
三、解答題:
17.解析:(Ⅰ),在中,由余弦定理,
得,
∴, (2分)
由,,
由得,,
∴,從而 (4分)
由題意可知,∴, (5分)
又∵△BCD是,∴當(dāng)時,則,由,
∴;
當(dāng)時,則,由,∴;
綜上,. (7分)
(Ⅱ)由(1)知,∴向量與的夾角為, (9分)
當(dāng)時,,,
∴. (10分)
當(dāng)時,,,
∴. (12分)
評析:本題考查平面向量和解三角形的基礎(chǔ)知識,考查分類討論的思想方法.求解時容易發(fā)生的錯誤是:(1)將條件“△BCD是直角三形”當(dāng)作“△BCD是以角是直角三形”來解,忽略對為直角的情況的討論;(2)在計算時,將當(dāng)作向量與的夾角,忽略了確定兩個向量的夾角時必須將它們的起點移到一起.暴露出思維的不嚴(yán)謹(jǐn)和概念理解的缺陷,在復(fù)習(xí)中要引起重視,加強(qiáng)訓(xùn)練.
18.解析: (Ⅰ)做了三次實驗,至少兩次實驗成功的情形有兩種:
(1)恰有兩次成功,其概率為; (2分)
(2)三次都成功,其概率為. (4分)
故得所求之概率為. (6分)
(Ⅱ)在第4次成功之前,共做了6次試驗,其中三次成功、三次失敗,且恰有兩次連續(xù)失敗,其各種可能情況的種數(shù)為. (10分)
因此,所求之概率為. (12分)
19.解析:(Ⅰ)∵SB=SC,AB=AC,M為BC中點,
∴SM⊥BC,AM⊥BC. (2分)
由棱錐的側(cè)面積等于底面積的2倍,即
得. (4分)
(Ⅱ)作正三棱錐的高SG,則G為正三角形ABC的中心,G在AM上,
∵SM⊥BC,AM⊥BC,
∴∠SMA是二面角S―BC―A的平面角.(6分)
在Rt△SGM中,∵∴∠SMA=∠SMG=60°,
即二面角S―BC―A的大小為60°. (8分)
(Ⅲ)∵△ABC的邊長是3,
∴, (10分)
∴. (12分)
評析計算二面角大小,既可以根據(jù)二面角的定義,通過作出二面角的平面角,再解三角形求角,也可以運用向量方法,轉(zhuǎn)化為計算兩個平面的法向量的夾角.做題時要考慮前后聯(lián)系,注意選擇簡便的方法.
20.解析:(Ⅰ)證明:假設(shè)存在一個實數(shù),使{an}是等比數(shù)列,則有,即
()2=2矛盾.
所以{an}不是等比數(shù)列. (3分)
(Ⅱ)證明:∵
又由上式知
故當(dāng)數(shù)列{bn}是以為首項,為公比的等比數(shù)列.
(7分)
(Ⅲ)當(dāng)由(Ⅱ)得于是
當(dāng)時,,從而上式仍成立.
要使對任意正整數(shù)n , 都有
即 (9分)
令
當(dāng)n為正奇數(shù)時,當(dāng)n為正偶數(shù)時,
于是可得
綜上所述,存在實數(shù),使得對任意正整數(shù),都有
的取值范圍為 (12分)
評析:(1)求解等差數(shù)列與等比數(shù)列的有關(guān)問題,定義、公式和性質(zhì)是主要工具,要注意抓住基本量───首項和公差(公比),方程思想、化歸思想和運算能力是考查的重點;(2)正面求解,直接證明難以突破時,可以考慮從反面入手,運用正難則反的思想來處理,反證法就是從反面入手的一種重要的推理方法,一般地,以否定的形式出現(xiàn)的數(shù)學(xué)命題,我們常用反證法來實現(xiàn)證明。
21.解析:(Ⅰ),……(1分)
∵函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
∴在處取得極大值,有, (3分)
即,這就是所求的之間的關(guān)系式. (4分)
(Ⅱ)當(dāng)在處取得極小值,有,即, ①
又由(Ⅰ)有: ②聯(lián)立①和②,解得. (5分)
此時,,在上,
在上,
∴在處確可取得極小值,故, (7分)
從而. (8分)
(Ⅲ)由(Ⅰ)得:,
∴,
它在上為減函數(shù),在為增函數(shù). (10分)
若存在實數(shù),使在上為單調(diào)函數(shù),則有,得.又因為,有,這與矛盾.
所以滿足題意的實數(shù)不存在. (12分)
評析: 導(dǎo)數(shù)是研究函數(shù)性質(zhì)的一個有力工具,運用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,可轉(zhuǎn)化為解不等式和方程,顯得非常簡捷且易于操作.值得注意的是:是取得極值的必要條件,因此,在(Ⅱ)中,由求出,必須檢驗.
22.解析:(Ⅰ)由題意可得 , (2分)
由,得,∴, (4分)
∴橢圓的方程為. (4分)
(Ⅱ)由(Ⅰ)可得橢圓的左焦點為,左準(zhǔn)線為,
連結(jié),則,設(shè),則,
∴, (6分)
化簡得的方程為. (8分)
(Ⅲ)將曲線向右平移2個單位,得曲線的方程為: ,其焦點為,準(zhǔn)線為,對稱軸為軸. (10分)
設(shè)直線的方程為,代入y2=4x,得y2-4ty-4=0.
由題意,可設(shè)(),(),則y1y2=-4,
且有 (12分)
∴,,
得.
∴三點共線. (14分)
評析:證明三點共線的方法很多,這里運用向量共線定理來證,體現(xiàn)了平面向量與解析幾何知識的交匯和平面向量知識在解析幾何中的應(yīng)用.近幾年的高考突出了在知識網(wǎng)絡(luò)的交匯點處設(shè)計命題的要求,平面向量與解析幾何知識的綜合考查成為一個不衰的熱點,復(fù)習(xí)中要引起重視.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com