江蘇省高郵中學(xué)2009屆高三第一學(xué)期期末模擬考試

數(shù)學(xué)試卷        

Ⅰ卷(必做題部分 共160分)

一、填空題:本大題共14小題,每小題5分,計70分.不需寫出解答過程,請把答案寫在答題紙的指定位置上.

1.若集合,滿足,則實數(shù)a=        

試題詳情

2.已知虛數(shù)z滿足等式: ,則             

試題詳情

3.函數(shù)的最小正周期是               

試題詳情

4. 某算法的偽代碼如右:則輸出的結(jié)果是             .

試題詳情

5已知條件p:x≤1,條件q: ,則p是q的          條件.

試題詳情

6.甲、乙兩同學(xué)各自獨立地考察兩個變量X、Y的線性相關(guān)

關(guān)系時,發(fā)現(xiàn)兩人對X的觀察數(shù)據(jù)的平均值相等,都是s,對Y的觀察數(shù)據(jù)的平均值也相等,都是t,各自求出的回歸直線分別是l1、l2,則直線l1l2必經(jīng)過同一點              。

試題詳情

7. 已知為坐標原點,,且,,則點的坐標為____________

試題詳情

8. 已知實數(shù)滿足的取值范圍是_____           ___.  

試題詳情

9.在0到1之間任取兩個實數(shù),則它們的平方和大于1的概率是                   。

試題詳情

10.若雙曲線經(jīng)過點,且焦點為,則它的離心率為            。

試題詳情

11.已知數(shù)列中,,其通項公式=

           。

試題詳情

12. 已知函數(shù)是偶函數(shù),則函數(shù)圖像與軸交點的縱坐標的最大值是             

試題詳情

13. 三位同學(xué)合作學(xué)習(xí),對問題“已知不等式對于恒成立,求的取值范圍”提出了各自的解題思路.

試題詳情

 甲說:“可視為變量,為常量來分析”.

試題詳情

  乙說:“尋找的關(guān)系,再作分析”.

試題詳情

  丙說:“把字母單獨放在一邊,再作分析”.

試題詳情

參考上述思路,或自已的其它解法,可求出實數(shù)的取值范圍是           

試題詳情

14.已知是定義在R上的不恒為零的函數(shù),且對任意滿足下列關(guān)系式:.考察下列結(jié)論:①; ②為偶函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.其中正確的結(jié)論有              _.(請將所有正確結(jié)論的序號都填上)

請把答案寫在答題紙的指定區(qū)域內(nèi).

試題詳情

二、解答題:本大題共6小題,計90分.解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,

15、(本小題滿分14分)某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求出物理成績低于50分的學(xué)生人數(shù);

(Ⅱ)估計這次考試物理學(xué)科及格率(60分及

以上為及格)

(Ⅲ) 從物理成績不及格的學(xué)生中選兩人,求

他們成績至少有一個不低于50分的概率.

 

 

 

 

 

 

 

 

 

 

試題詳情

16.(本小題滿分14分)已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;.
(Ⅱ)當(dāng)時,若,函數(shù)的值域是,求實數(shù)的值。

 

 

 

 

 

試題詳情

17.(本小題滿分14分)如圖,在長方體中,,、分別為、的中點.

試題詳情

(Ⅰ)求證:平面;

試題詳情

(Ⅱ)求證:平面.             

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

18.(本小題滿分16分)已知直線l的方程為,且直線l與x軸交于點M,圓與x軸交于兩點(如圖).

試題詳情

(I)過M點的直線交圓于兩點,且圓孤恰為圓周的,求直線的方程;

(II)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;

試題詳情

(III)過M點作直線與圓相切于點N,設(shè)(II)中橢圓的兩個焦點分別為F1,F2,求三角形面積。

 

 

 

 

 

 

 

 

 

 

試題詳情

19. (本小題滿分16分)已知公差大于零的等差數(shù)列的前n項和為Sn,且滿足:

試題詳情

(1)求數(shù)列的通項公式

試題詳情

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)c;

試題詳情

(3)若(2)中的的前n項和為,求證:

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

20.(本小題16分)定義在的三個函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,

試題詳情

g(x)= ,且g(x)在x=1處取極值。

(I)求a值及h(x)的單調(diào)區(qū)間;

試題詳情

(II)求證:當(dāng)1<x< 時,恒有

試題詳情

(III)把h(x)對應(yīng)的曲線向上平移6個單位后得曲線,求與g(x)對應(yīng)曲線的交點個數(shù),并說明道理.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

江蘇省高郵中學(xué)2009屆高三第一學(xué)期期末模擬考試

數(shù)學(xué)試卷

Ⅱ卷(加試題部分 共40分)

加試題共4題,每題10分,請把答案寫在答題紙的指定區(qū)域內(nèi).

試題詳情

1.設(shè)矩陣對應(yīng)的變換是把坐標平面上的點的橫坐標伸長3倍,再將縱坐標伸長2倍的兩個伸壓變換的復(fù)合,求其逆矩陣以及圓的作用下的新曲線的方程.

 

試題詳情

2.已知橢圓的長軸長為6,焦距,過橢圓左焦點F1作一直線,交橢圓于兩點M、N,設(shè),當(dāng)α為何值時,MN與橢圓短軸長相等?(用極坐標或參數(shù)方程方程求解)

 

 

試題詳情

3. 如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.

(1)求異面直線BE與AC所成角的余弦值;

(2)求二面角A-BE-C的余弦值.

 

 

 

 

試題詳情

4.盒子中裝著標有數(shù)字1,2,3,4,5的卡片各2張,從盒子中任取3張卡片,按3張卡片上最大數(shù)字的8倍計分,每張卡片被取出的可能性都相等,用表示取出的3張卡片上的最大數(shù)字,求:

(1)取出的3張卡片上的數(shù)字互不相同的概率;

試題詳情

(2)隨機變量的概率分布和數(shù)學(xué)期望;

(3)計分不小于20分的概率.

 

江蘇省高郵中學(xué)2009屆第一學(xué)期期末模擬考試

高三數(shù)學(xué)

試題詳情

一、填空題:(每小題5分,共70分)

1.2       2. 1+2i       3.π        4. 9       5.充分不必要

6.(s,t)  7.   8.    9.     10.

11.    12.  4       13.    14①③④

二、解答題:(共90分)

15、(本小題滿分14分)

解: (Ⅰ)因為各組的頻率和等于1,故低于50分的頻率為:

………………………………3分

所以低于50分的人數(shù)為(人)………………………………………….5分

(Ⅱ)依題意,成績60及以上的分數(shù)所在的第三、四、五、六組(低于50分的為第一組),

頻率和為

所以,抽樣學(xué)生成績的合格率是%……………………………………………………8分.

于是,可以估計這次考試物理學(xué)科及格率約為%……………………………………9分.

(Ⅲ)“成績低于50分”及“[50,60)”的人數(shù)分別是6,9。所以從成績不及格的學(xué)生中選兩人,他們成績至少有一個不低于50分的概率為:

              ……………………………………………………14分

 

16.(本小題滿分14分)

解:

(Ⅰ)當(dāng)時,    ………………………………3分

當(dāng)時,是增函數(shù),

所以函數(shù)的單調(diào)遞增區(qū)間為.   ……………7分

(Ⅱ)由,

因為 ,所以當(dāng)時,取最小值3,即
當(dāng)時,取最大值4,即
代入(1)式得.        ………………………………14分

 

17.(本小題滿分14分)

(Ⅰ)證明:側(cè)面,

側(cè)面,

………3分

中,,

則有, 

,,           ………………………………………6分

平面.        ……………………………………7分

 

(Ⅱ)證明:連、,連

,,四邊形是平行四邊形,……………10分

                                       ………………………11分

平面平面,

平面.                               ………………………14分

 

18.(本小題滿分16分)

解:(I)為圓周的點到直線的距離為

設(shè)的方程為的方程為…5分

(II)設(shè)橢圓方程為,半焦距為c,則橢圓與圓O恰有兩個不同的公共點,則                     ………………………………7分

當(dāng)時,所求橢圓方程為;當(dāng)時,

所求橢圓方程為                      ………………………………11分

(III)設(shè)切點為N,則由題意得,在中,,則

N點的坐標為,……………………12分

若橢圓為其焦點F1,F2

分別為點A,B故

若橢圓為,其焦點為,

此時          ………………………………16分

19.(本小題滿分16分)

解:(1)為等差數(shù)列,∵,又

,是方程的兩個根

又公差,∴,∴, ……………………………      2分

   ∴   ∴………………………………  4分

(2)由(1)知, …………………………………    5分

, …………………………………………  7分

是等差數(shù)列,∴,∴ …………………………  8分

舍去) ……………………………………………………… 9分

(3)由(2)得 …………………………………………………… 11分

  ,時取等號 … 13分

,時取等號15分

(1)、(2)式中等號不可能同時取到,所以 ………………… 16分

 

20. (本小題滿分16分)

解(I)由題意:

∴a=2                ……………………………………………  2分

所以h(x)在上為增函數(shù),h(x)在上為增函數(shù)。…………       4分

(II)

欲證:只需證:,即證:

∴當(dāng)x>1時,為增函數(shù)……………………………….9分

∴結(jié)論成立          ………………………………………………………………10分

 

(III)由 (1)知:

對應(yīng)表達式為

∴問題轉(zhuǎn)化成求函數(shù)

即求方程:

即:

設(shè)

∴當(dāng)時,為減函數(shù).

當(dāng)時,為增函數(shù).

的圖象開口向下的拋物線

的大致圖象如圖:

的交點個數(shù)為2個.即的交點個數(shù)為2個. …………………………………16分

 

 

 

江蘇省高郵中學(xué)2009屆高三第一學(xué)期期末模擬考試

數(shù)學(xué)試卷

Ⅱ卷(加試題部分)參考答案

1.解: ,………………………………………………………  5分

的作用下的新曲線的方程為 ……10分

2.已知橢圓的長軸長為6,焦距,過橢圓左焦點F1作一直線,交橢圓于兩點M、N,設(shè),當(dāng)α為何值時,MN與橢圓短軸長相等?

解:以橢圓的左焦點為極點長軸所在直線為

極軸建立極坐標系(如圖)

這里:a=3,c=,

………………………2分

所以橢圓的極坐標方程為:

………………………4分

設(shè)M點的極坐標為,N點的極坐標為,………………5分

解法二:設(shè)橢圓的方程為,其左焦點為,直線MN的參數(shù)方程為:

,           ………………4分

將此參數(shù)方程代人橢圓方程并整理得:

,設(shè)M、N對應(yīng)的參數(shù)分別為,則

2解:(1)以O(shè)為原點,OB,OC,OA分別為x,y,z軸建立空間直角坐標系.

則有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).

 ……………………2分

cos<>.            ………………………………4分

由于異面直線BE與AC所成的角是銳角,故其余弦值是.………………5分

(2),,設(shè)平面ABE的法向量為,

則由,,得

取n=(1,2,2),

平面BEC的一個法向量為n2=(0,0,1),

 ………………………………7分

     …………………………………9分

由于二面角A-BE-C的平面角是n1與n2的夾角的補角,其余弦值是-.…… 10分

4.解:(1)記"一次取出的3張卡片上的數(shù)字互不相同的事件"為A,

       則  ………………………………………………2分

(2)由題意有可能的取值為:2,3,4,5

 

  ………5分

所以隨機變量的概率分布為:

 所以的數(shù)學(xué)期望為E

同步練習(xí)冊答案