(1)如圖1為分別使用游標卡尺和螺旋測微器測量圓柱體的長度和直徑,某次測量的示數(shù)如圖所示,長度為
5.01
5.01
cm,直徑為
0.5315
0.5315
 cm.
(2)某同學探究彈力與彈簧伸長量的關系.
①將彈簧懸掛在鐵架臺上,將刻度尺固定在彈簧一側,彈簧軸線和刻度尺都應在
豎直
豎直
方向(填“水平”或“豎直”).
②彈簧自然懸掛,待彈簧
穩(wěn)定
穩(wěn)定
時,長度記為L0;彈簧下端掛上砝碼盤時,長度記為Lx;在砝碼盤中每次增加10g砝碼,彈簧長度依次記為L1至L6,數(shù)據(jù)如表:
代表符號 L0 Lx L1 L2 L3 L4 L5 L6
數(shù)值(cm) 25.35 27.35 29.35 31.30 33.40 35.35 37.4 39.30
表中有一個數(shù)值記錄不規(guī)范,代表符號為
L5
L5
.由表可知所用刻度尺的最小分度為
1mm
1mm

③如圖2是該同學根據(jù)表中數(shù)據(jù)作的圖,縱軸是砝碼的質(zhì)量,橫軸是彈簧長度與
Lx
Lx
的差值(填“L0”或“Lx”).
④由圖2可知彈簧的勁度系數(shù)為
4.9
4.9
N/m;通過圖和表可知砝碼盤的質(zhì)量為
10
10
g(結果保留兩位有效數(shù)字,重力加速度取9.8m/s2).
分析:(1)游標卡尺的讀法,先確定分度數(shù),從而確定精確度,進行讀數(shù);螺旋測微器的讀法要用主尺的整刻度加可動刻度數(shù)乘以精確度,要估讀;
(2)彈簧自然懸掛,故是豎直放置;充分利用測量數(shù)據(jù),根據(jù)公式△F=k△x可以計算出彈簧的勁度系數(shù)k.其中△x為彈簧的形變量.
解答:解:(1)是10分度的卡尺,其精確度為0.1mm
則圖示讀數(shù)為:50+1×0.1=50.1mm=5.01cm
螺旋測微器:不動刻度為5mm,可動刻度為31.5×0.01mm
則讀數(shù)為5+31.5×0.01=5.315mm=0.5315cm
故答案為:5.01cm 0.5315mm
(2)①用鐵架臺,一定是豎直懸掛;
②彈簧晃動是測量無意義;
③用毫米刻度尺測量長度是要估讀到分度值的下一位,記錄數(shù)據(jù)的最后一位是估讀位,故數(shù)據(jù)L5記錄不規(guī)范,由表可知所用刻度尺的最小刻度為1mm;
④根據(jù)胡克定律公式△F=k△x,有
k=
△F
△x
=
60×10-3×9.8N
12×10-2m
=4.9N/kg

由表格得到,彈簧原長為:L0=25.35cm;掛砝碼盤時:Lx=27.35cm;
根據(jù)胡克定律,砝碼盤質(zhì)量為:M=
k(Lx-L0)
g
=
4.9×(0.2735-0.2535)
9.8
kg=0.01kg=10g
;
故答案為:(1)5.01,0.5310~0.5320;(2)①豎直,②穩(wěn)定,L5,1mm;③Lx,④4.9,10.
點評:彈簧測力計的原理是在彈簧的彈性限度內(nèi),彈簧的伸長與受到的拉力成正比.對于實驗問題,我們要充分利用圖象處理實驗數(shù)據(jù)來減少偶然誤差.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

光電計時器是一種研究物體運動情況的常用計時儀器,其結構如圖1所示,a、b分別是光電門的激光發(fā)射和接收裝置,當有物體從a、b間通過時,光電計時器就可以顯示物體的擋光時間.利用如圖2所示裝置測量滑塊與長1m左右的木板間動摩擦因數(shù)及被壓縮彈簧的彈性勢能,圖中木板固定在水平面上,木板的左壁固定有一個處于鎖定狀態(tài)的壓縮輕彈簧(彈簧長度與木板相比可忽略),彈簧右端與滑塊接觸,1和2是固定在木板上適當位置的兩個光電門,與之連接的兩個光電計時器沒有畫出.現(xiàn)使彈簧解除鎖定,滑塊獲得一定的初速度后,水平向右運動,光電門1、2各自連接的計時器顯示的擋光時間分別為2.0×10-2s和5.0×10-2s,用游標卡尺測量小滑塊的寬度d,卡尺示數(shù)如圖3所示.
(1)讀出滑塊的寬度d=
5.50
5.50
cm
(2)滑塊通過光電門1的速度為v1,通過光電門2的速度v2,則v2=
1.10
1.10
m/s;(結果保留兩位有效數(shù)字)
(3)若用米尺測量出兩個光電門之間的距離為L,已知當?shù)氐闹亓铀贋間,則滑塊與木板動摩擦因數(shù)μ表達式為
μ=
d2
2gL
?(
1
t
2
1
-
1
t
2
2
)
μ=
d2
2gL
?(
1
t
2
1
-
1
t
2
2
)
(各量均用字母表示).
(4)若用米尺測量出滑塊初始位置到光電門2的距離為x,為測量被壓縮彈簧的彈性勢能,還需測量的物理量是
滑塊的質(zhì)量m
滑塊的質(zhì)量m
(說明其含義,并指明代表物理量的字母) 

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

(2013?南開區(qū)二模)(1)如圖1為“電流天平”,可用于測定磁感應強度.在天平的右端掛有一矩形線圈,設其匝數(shù)n=5匝,底邊cd長L=20cm,放在垂直于紙面向里的待測勻強磁場中,且線圈平面與磁場垂直.當線圈中通入如圖方向的電流I=100mA時:調(diào)節(jié)砝碼使天平平衡.若保持電流大小不變;使電流方向反向,則要在天平右盤加質(zhì)量m=8.2g的砝碼,才能使天平再次平衡.則cd邊所受的安培力大小為
4.1×10-2
4.1×10-2
N,磁場的磁感應強度B的大小為
0.41
0.41
T.(g=10m/s2

(2)某同學設計了如圖2所示的裝置來探究加速度與力的關系.彈簧秤固定在一合適的木板上,桌面的右邊緣固定一支表面光滑的鉛筆以代替定滑輪,細繩的兩端分別與彈簧秤的掛鉤和礦泉水瓶連接.在桌面上畫出兩條平行線MN、PQ,并測出間距d.開始時將木板置于MN處,現(xiàn)緩慢向瓶中加水,直到木板剛剛開始運動為止,記下彈簧秤的示數(shù)F0,以此
表示滑動摩擦力的大小.再將木板放回原處并按住,繼續(xù)向瓶中加水后,記下彈簧秤的示數(shù)F1,然后釋放木板,并用秒表記下木板運動到PQ處的時間t.
①木板的加速度可以用d、t表示為a=
2d
t2
2d
t2
;
②改變瓶中水的質(zhì)量重復實驗,確定加速度a與彈簧秤示數(shù)的關系.圖3中能表示該同學實驗結果的是
C
C
;
③用加水的方法改變拉力的大小與掛鉤碼的方法相比,它的優(yōu)點是
BC
BC

A.可以改變滑動摩擦力的大小        B.可以更方便地獲取多組實驗數(shù)據(jù)
C.可以比較精確地測出摩擦力的大小  D.可以獲得更大的加速度以提高實驗精度
(3)在練習使用多用表的實驗中,某同學連接的電路如圖4所示.
①若旋轉選擇開關,使尖端對準直流電流擋,閉合電鍵S,此時測得的是通過
R1
R1
的電流;
②若斷開電路中的電鍵S,旋轉選擇開關使其尖端對準歐姆擋,此時測得的是
R1+R2
R1+R2
的電阻;
③若旋轉選擇開關,使尖端對準直流電壓擋,閉合電鍵S,并將滑動變阻器的滑片移至最左端,此時測得的是
R2
R2
兩端的電壓;
④在使用多用表的歐姆擋測量電阻時,若
D
D

A.雙手捏住兩表筆金屬桿,測量值將偏大
B.測量時發(fā)現(xiàn)指針向左偏離中央刻度過大,則必須減小倍率,重新調(diào)零后再進行測量
C.選擇“×l0”倍率測量時發(fā)現(xiàn)指針位于20與30 正中間,則測量值等于250Ω
D.歐姆表內(nèi)的電池使用時間太長,雖然完成調(diào)零,但測量值將略偏大.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

(1)如圖1所示為“探究加速度與物體受力與質(zhì)量的關系”實驗裝置圖.圖中A為小車,B為裝有砝碼的小桶,C為一端帶有定滑輪的長木板,小車通過紙帶與打點計時器相連,打點計時器接50HZ交流電.小車的質(zhì)量為m1,小桶及砝碼的總質(zhì)量為m2,實驗過程中用小桶和砝碼受到的重力當作小車所受的合外力.

①下列說法正確的是______.
A.每次改變小車質(zhì)量時,應重新平衡摩擦力
B.實驗時應先接通打點計時器電源,再釋放小車
C.本實驗m2應遠大于m1
D.在用圖象探究加速度與質(zhì)量關系時,應作a-數(shù)學公式圖象
②實驗時,某同學由于疏忽,遺漏了平衡摩擦力這一步驟,他測量得到的a一F圖象,可能是圖2中的圖線______.(選填“甲”、“乙”、“丙”)
③如圖3所示為某次實驗得到的紙帶,紙帶中相鄰計數(shù)點間的距離已標出,相鄰計數(shù)點間還有四個點沒有畫出.由此可求得小車的加速度大小______m/s2.(結果保留三位有效數(shù)字)
(2)在“測定某電阻絲的電阻率”實驗中①用螺旋測微器測量電阻絲直徑,如圖4所示,則電阻絲的直徑是______ mm.
②用多用表的歐姆擋粗測電阻絲的阻值,已知電阻絲阻值很大,約為20kΩ.下面給出的操作步驟中,合理的實驗步驟順序是______(填寫相應的字母)
a.將兩表筆短接,調(diào)節(jié)歐姆擋調(diào)零旋鈕使指針對準刻度盤上歐姆擋的零刻度
b.將兩表筆分別連接到被測電阻絲的兩端,讀出阻值后,斷開兩表筆
c.旋轉選擇開關,使其尖端對準歐姆擋的“×1k”擋
d.旋轉選擇開關,使其尖端對準“OFF”擋,并拔出兩表筆
③若用電流表和電壓表精確測量此電阻絲的阻值,實驗室提供下列可供選用的器材:
電壓表V(量程3V,內(nèi)阻約50kΩ)
電流表A1(量程200 μA,內(nèi)阻約200Ω)
電流表A2(量程5mA,內(nèi)阻約20Ω)
電流表A3(量程0.6A,內(nèi)阻約1Ω)
滑動變阻器R(最大值500Ω)
電源E(電動勢4.5V,內(nèi)阻約0.2Ω)
開關S導線
a.在所提供的電流表中應選用______(填字母代號).
b.在圖5的虛線框中畫出測電阻的實驗電路.
④根據(jù)上面測得的數(shù)據(jù),即可求出該電阻絲的電阻率,若測得電阻絲長度為L,直徑為d,在③中正確操作后得到電壓表示數(shù)為U,電流表示數(shù)為I,則該金屬絲的電阻率為______.

查看答案和解析>>

科目:高中物理 來源:2012年廣東省佛山一中高考物理模擬試卷(解析版) 題型:解答題

(1)如圖1所示為“探究加速度與物體受力與質(zhì)量的關系”實驗裝置圖.圖中A為小車,B為裝有砝碼的小桶,C為一端帶有定滑輪的長木板,小車通過紙帶與打點計時器相連,打點計時器接50HZ交流電.小車的質(zhì)量為m1,小桶及砝碼的總質(zhì)量為m2,實驗過程中用小桶和砝碼受到的重力當作小車所受的合外力.

①下列說法正確的是______.
A.每次改變小車質(zhì)量時,應重新平衡摩擦力
B.實驗時應先接通打點計時器電源,再釋放小車
C.本實驗m2應遠大于m1
D.在用圖象探究加速度與質(zhì)量關系時,應作a-圖象
②實驗時,某同學由于疏忽,遺漏了平衡摩擦力這一步驟,他測量得到的a一F圖象,可能是圖2中的圖線______.(選填“甲”、“乙”、“丙”)
③如圖3所示為某次實驗得到的紙帶,紙帶中相鄰計數(shù)點間的距離已標出,相鄰計數(shù)點間還有四個點沒有畫出.由此可求得小車的加速度大小______m/s2.(結果保留三位有效數(shù)字)
(2)在“測定某電阻絲的電阻率”實驗中①用螺旋測微器測量電阻絲直徑,如圖4所示,則電阻絲的直徑是______ mm.
②用多用表的歐姆擋粗測電阻絲的阻值,已知電阻絲阻值很大,約為20kΩ.下面給出的操作步驟中,合理的實驗步驟順序是______(填寫相應的字母)
a.將兩表筆短接,調(diào)節(jié)歐姆擋調(diào)零旋鈕使指針對準刻度盤上歐姆擋的零刻度
b.將兩表筆分別連接到被測電阻絲的兩端,讀出阻值后,斷開兩表筆
c.旋轉選擇開關,使其尖端對準歐姆擋的“×1k”擋
d.旋轉選擇開關,使其尖端對準“OFF”擋,并拔出兩表筆
③若用電流表和電壓表精確測量此電阻絲的阻值,實驗室提供下列可供選用的器材:
電壓表V(量程3V,內(nèi)阻約50kΩ)
電流表A1(量程200 μA,內(nèi)阻約200Ω)
電流表A2(量程5mA,內(nèi)阻約20Ω)
電流表A3(量程0.6A,內(nèi)阻約1Ω)
滑動變阻器R(最大值500Ω)
電源E(電動勢4.5V,內(nèi)阻約0.2Ω)
開關S導線
a.在所提供的電流表中應選用______(填字母代號).
b.在圖5的虛線框中畫出測電阻的實驗電路.
④根據(jù)上面測得的數(shù)據(jù),即可求出該電阻絲的電阻率,若測得電阻絲長度為L,直徑為d,在③中正確操作后得到電壓表示數(shù)為U,電流表示數(shù)為I,則該金屬絲的電阻率為______.

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關注的是電場中更本質(zhì)的內(nèi)容,關注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內(nèi)容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內(nèi)部:E內(nèi) = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U內(nèi) = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結為以下三層含義——

a、導體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內(nèi)部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr =  。

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結論適用于非勻強電場。

五、電介質(zhì)的極化

1、電介質(zhì)的極化

a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質(zhì)的極化:當介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠對稱抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發(fā)的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結論為多少?如果這個總電量的分布不是均勻的,結論會改變嗎?

〖答〗UP =  ;結論不會改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內(nèi)任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結論的反證。

〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。

【相關應用】如圖7-9所示,球形導體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據(jù)靜電感應的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式。

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構成環(huán)形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關系已經(jīng)足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關系即可。

【答案】(1);(2)。 

【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球將開始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關系 mv + 2m v′= 0

能量關系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導體和電介質(zhì)

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側電量、A板內(nèi)側電量,B板內(nèi)側電量?、B板外側電量;(2)A板外側空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側受力·(方向相左),內(nèi)側受力·(方向向右),它們合成即可,結論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。

【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強可以根據(jù)E = 關系求解,比較常規(guī)(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導體表面接觸的介質(zhì)表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡,試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡的級數(shù),整個網(wǎng)絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數(shù),一般結論應適用特殊情形:令級數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關系:++= 0

電勢關系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結合網(wǎng)絡計算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關系:Q1′= Q3

          Q2′+ Q3′= 

電勢關系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

同步練習冊答案