分析 (Ⅰ)由二倍角公式推導(dǎo)出f(x)=sin(2x-$\frac{π}{3}$),由此能求出f(x)的最小正周期和單調(diào)遞增區(qū)間.
(Ⅱ)g(x)=f(x+a)=sin(2x+2a-$\frac{π}{3}$),由函數(shù)g(x)為偶函數(shù),求出a=$\frac{kπ}{2}+\frac{5π}{12}$,k∈Z,由此能求出|a|的最小值.
解答 解:(Ⅰ)f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$,
=sinxcosx-$\sqrt{3}co{s}^{2}x$+$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x$
=sin(2x-$\frac{π}{3}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,
由2k$π-\frac{π}{2}$$≤2x-\frac{π}{3}≤$$2kπ+\frac{π}{2}$,k∈Z,
得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}$,k∈Z,
∴函數(shù)f(x)單調(diào)遞增區(qū)間為[k$π-\frac{π}{12}$,k$π+\frac{5π}{12}$],k∈Z.
(Ⅱ)由題意得g(x)=f(x+a)=sin(2x+2a-$\frac{π}{3}$),
∵函數(shù)g(x)為偶函數(shù),
∴2a-$\frac{π}{3}$=kπ+$\frac{π}{2}$,解得a=$\frac{kπ}{2}+\frac{5π}{12}$,k∈Z,
當(dāng)k=-1時,|a|的最小值為$\frac{π}{12}$.
點評 本題考查三角函數(shù)的最小正周期、單調(diào)增區(qū)間的求法,考查實數(shù)值的絕對值的最小值求法,考查二倍角公式、三角形圖象及性質(zhì)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
每件A產(chǎn)品 | 每件B產(chǎn)品 | |
研制成本,搭載實驗費用之和(萬元) | 20 | 30 |
產(chǎn)品重量(千克) | 10 | 5 |
預(yù)計收益(萬元) | 80 | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com