相關(guān)習(xí)題
 0  266474  266482  266488  266492  266498  266500  266504  266510  266512  266518  266524  266528  266530  266534  266540  266542  266548  266552  266554  266558  266560  266564  266566  266568  266569  266570  266572  266573  266574  266576  266578  266582  266584  266588  266590  266594  266600  266602  266608  266612  266614  266618  266624  266630  266632  266638  266642  266644  266650  266654  266660  266668  266669 

科目: 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓的左右焦點(diǎn),與橢圓在第一象限的交點(diǎn)為,且, 三點(diǎn)共線.

(1)求橢圓的方程;

(2)設(shè)與直線為原點(diǎn))平行的直線交橢圓兩點(diǎn),當(dāng)的面積取取最大值時,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過定點(diǎn),且在軸上截得的弦長,設(shè)動圓圓心的軌跡為曲線

1)求曲線的方程;

2)過點(diǎn)作直線交曲線兩點(diǎn),問在曲線上是否存在一點(diǎn),使得點(diǎn)在以為直徑的圓上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了了解一個智力游戲是否與性別有關(guān),從某地區(qū)抽取男女游戲玩家各200請客,其中游戲水平分為高級和非高級兩種.

1)根據(jù)題意完善下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%以上的把握認(rèn)為智力游戲水平高低與性別有關(guān)?

性別

高級

非高級

合計

40

140

合計

2)按照性別用分層抽樣的方法從這些人中抽取10人,從這10人中抽取3人作為游戲參賽選手;

若甲入選了10人名單,求甲成為參賽選手的概率;

設(shè)抽取的3名選手中女生的人數(shù)為,求的分布列和期望.

附表:,其中

0.010

0.05

0.001

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形,,,,且,,

1)證明:平面

2)求點(diǎn)到平面的距離;

3)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù),.

1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;

2是函數(shù)的極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;

3)在(2)的條件下,,若,使不等式恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列命題中不正確的是( 。

A.設(shè)為直線,為平面,且;則的充要條件

B.設(shè)隨機(jī)變量,若,則

C.若不等式()恒成立,則的取值范圍是

D.已知直線經(jīng)過點(diǎn),則的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】中國剩余定理又稱孫子定理1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中物不知數(shù)問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為中國剩余定理中國剩余定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將120192019個數(shù)中,能被3除余2且被5整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列所有項(xiàng)中,中間項(xiàng)的值為( 。

A.992B.1022C.1007D.1037

查看答案和解析>>

科目: 來源: 題型:

【題目】2017年起,全國各省市陸續(xù)實(shí)施了新高考,許多省市采用了“”的選科模式,即:考生除必考的語數(shù)外三科外,再從物理化學(xué)生物歷史地理政治六個學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地調(diào)查小組對某中學(xué)進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為

1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,將選物理且選化學(xué)的人數(shù)占選化學(xué)總?cè)藬?shù)的比作為概率,從該中學(xué)選化學(xué)的考生中隨機(jī)抽取4人,記這4人中選物理且選擇化學(xué)的考生人數(shù)為,求的分布列(用排列數(shù)組合數(shù)表示即可)和數(shù)學(xué)期望.

2)若研究得到在犯錯誤概率不超過001的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理且選化學(xué)的人數(shù)至少有多少?(單位:百人,精確到001)

附:,其中

0100

0050

0010

0001

2706

3841

6635

10828

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示的多面體的底面為直角梯形,四邊形為矩形,且,,,,,分別為,,的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合,對于,,定義的差為之間的距離為.

1)若,試寫出所有可能的,;

2,證明:

3,三個數(shù)中是否一定有偶數(shù)?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案