科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)在曲線上任取一點,連接,在射線上取一點,使,求點軌跡的極坐標(biāo)方程;
(2)在曲線上任取一點,在曲線上任取一點,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù)(),則稱函數(shù)是“雙奇函數(shù)” .函數(shù).
(1)若函數(shù)是“雙奇函數(shù)”,求實數(shù)的值;
(2)假設(shè).
(i)在(1)的條件下,討論函數(shù)的單調(diào)性;
(ii)若,討論函數(shù)的極值點.
查看答案和解析>>
科目: 來源: 題型:
【題目】“微信運(yùn)動”已成為當(dāng)下熱門的運(yùn)動方式,小王的微信朋友內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
性別 步數(shù) | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設(shè)ξ=|X﹣Y|,求E的分布列及數(shù)學(xué)期望.
附:K2,n=a+b+c+d.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標(biāo);若不存在,也請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),.
(1)若對時,不等式恒成立,求實數(shù)a的取值范圍(e為自然對數(shù)的底數(shù));
(2)當(dāng)時,求函數(shù)的極大值;
(3)求證:當(dāng)時,曲線與直線有且僅有一個公共點.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè),函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)與函數(shù)存在相同的零點,求實數(shù)a的值;
(3)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)場計劃設(shè)計建造一條2000米長的水渠,其橫斷面如圖所示.其中,底部是半徑為1米的圓弧,上部是有一定傾角的線段與,渠深為米,且圓弧的圓心為O在上,,,,.據(jù)測算,水渠底部曲面每平方米的造價為百元,上部矩形壁面每平方米的造價為1百元,其他費用忽略不計.設(shè),.
(1)試用表示水渠建造的總費用(單位:百元);
(2)試確定的值,使得建造總費用最低.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)為了豐富學(xué)生的課外文體活動,分別開設(shè)了閱讀、書法、繪畫等文化活動;跑步、游泳、健身操等體育活動.該中學(xué)共有高一學(xué)生300名,要求每位學(xué)生必須選擇參加其中一項活動,現(xiàn)對高一學(xué)生的性別、學(xué)習(xí)積極性及選擇參加的文體活動情況進(jìn)行統(tǒng)計,得到數(shù)據(jù)如下:
(1)在選擇參加體育活動的學(xué)生中按性別分層抽取6名,再從這6名學(xué)生中抽取2人了解家庭情況,求2人中至少有1名女生的概率;
(2)是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與選擇參加文化活動有關(guān)?請說明你的理由.
附:參考公式:,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點為極點、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;
(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com