相關(guān)習(xí)題
 0  266053  266061  266067  266071  266077  266079  266083  266089  266091  266097  266103  266107  266109  266113  266119  266121  266127  266131  266133  266137  266139  266143  266145  266147  266148  266149  266151  266152  266153  266155  266157  266161  266163  266167  266169  266173  266179  266181  266187  266191  266193  266197  266203  266209  266211  266217  266221  266223  266229  266233  266239  266247  266669 

科目: 來(lái)源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)BMI數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重;當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕;身高大于或等于170的我們說(shuō)身高較高;身高小于170的我們說(shuō)身高較矮.

1)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖所示,請(qǐng)根據(jù)所得信息,完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為男體育特長(zhǎng)生的身高對(duì)指數(shù)有影響;

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

2)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如下表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)率 (保留兩位有效數(shù)字);

編號(hào)

1

2

3

4

5

6

7

8

體重

57

58

53

61

66

57

50

66

殘差

0.1

0.3

0.9

-1.5

-0.5

②通過(guò)殘差分析,對(duì)于殘差(絕對(duì)值)最大的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤.已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為58kg.請(qǐng)重新根據(jù)最小二乘法的思想與公式,求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.

(參考公式)

,,

,

.

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

(參考數(shù)據(jù))

,,,

,.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為、,過(guò)右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).當(dāng)時(shí),是橢圓的下頂點(diǎn),且的周長(zhǎng)為6.

1)求橢圓的方程;

2)設(shè)橢圓的右頂點(diǎn)為,直線、分別與直線交于、點(diǎn),證明:當(dāng)變化時(shí),以線段為直徑的圓與直線相切.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,已知是直角梯形,且,平面平面,, , ,的中點(diǎn).

1)求證:平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,且在橢圓E上.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)已知垂直于x軸的直線EAB兩點(diǎn),垂直于y軸的直線EC、D兩點(diǎn),的交點(diǎn)為P,且,間:是否存在兩定點(diǎn)M,N,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,三棱柱的底面是正三角形,底面,M的中點(diǎn).

1)求證:平面

2)若,且沿側(cè)棱展開(kāi)三棱柱的側(cè)面,得到的側(cè)面展開(kāi)圖的對(duì)角線長(zhǎng)為,求作點(diǎn)在平面內(nèi)的射影H,請(qǐng)說(shuō)明作法和理由,并求線段AH的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為 為參數(shù)),曲線C1在變換T的作用下變成曲線C2

1)求曲線C2的普通方程;

2)若m>1,求曲線C2與曲線C3y=m|x|-m的公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知P是曲線上的點(diǎn),Q是曲線上的點(diǎn),曲線與曲線關(guān)于直線對(duì)稱,M為線段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為________

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率利潤(rùn)保費(fèi)收入)的頻率分布直方圖如圖所示:

(1)試估計(jì)這款保險(xiǎn)產(chǎn)品的收益率的平均值;

(2)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量為(萬(wàn)份).從歷史銷售記錄中抽樣得到如下5組的對(duì)應(yīng)數(shù)據(jù):

25

30

38

45

52

銷量為(萬(wàn)份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計(jì)算出的回歸方程為

(。┣髤(shù)的值;

(ⅱ)若把回歸方程當(dāng)作的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問(wèn)每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大利潤(rùn),并求出最大利潤(rùn).注:保險(xiǎn)產(chǎn)品的保費(fèi)收入每份保單的保費(fèi)銷量.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】中,,,AB的垂直平分線分別交ABACD、E(圖一),沿DE折起,使得平面平面BDEC(圖二).

1)若FAB的中點(diǎn),求證:平面ADE

2PAC上任意一點(diǎn),求證:平面平面PBE

3PAC上一點(diǎn),且平面PBE,求二面角的大。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】甲居住在城鎮(zhèn)的,準(zhǔn)備開(kāi)車到單位處上班,若該地各路段發(fā)生堵車事件都是相互獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖(例如:算作兩個(gè)路段:路段發(fā)生堵車事件的概率為,路段發(fā)生堵車事件的概率為).

(1)請(qǐng)你為甲選擇一條由的最短路線

(即此人只選擇從西向東和從南向北的路線),

使得途中發(fā)生堵車事件的概率最;

(2)設(shè)甲在路線中遇到的堵車次數(shù)為隨機(jī)變量,的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案