科目: 來源: 題型:
【題目】設(shè)n為正整數(shù),稱n×n的方格表Tn的網(wǎng)格線的交點(共(n+1)2個交點)為格點.現(xiàn)將數(shù)1,2,……,(n+1)2分配給Tn的所有格點,使不同的格點分到不同的數(shù).稱Tn的一個1×1格子S為“好方格”,如果從2S的某個頂點起按逆時針方向讀出的4個頂點上的數(shù)依次遞增(如圖是將數(shù)1,2,…,9分配給T2的格點的一種方式,其中B、C是好方格,而A、D不是好方格)設(shè)Tn中好方格個數(shù)的最大值為f(n).
(1)求f(2)的值;
(2)求f(n)關(guān)于正整數(shù)n的表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a是實數(shù),關(guān)于z的方程(z2-2z+5)(z2+2az+1)=0有4個互不相等的根,它們在復(fù)平面上對應(yīng)的4個點共圓,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若直線是曲線的一條切線,求實數(shù)的值;
(2)當(dāng)時,若函數(shù)在上有兩個零點.求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,設(shè)拋物線C1:的準(zhǔn)線1與x軸交于橢圓C2:的右焦點F2,F1為C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,M為C1上一動點,且在P,Q之間移動.
(1)當(dāng)取最小值時,求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)△MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由3個人依次出場解密,每人限定時間是1分鐘內(nèi),否則派下一個人.3個人中只要有一人解密正確,則認(rèn)為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲100次的測試記錄,繪制了如圖所示的頻率分布直方圖.
(1)若甲解密成功所需時間的中位數(shù)為47,求、的值,并求出甲在1分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.
①求該團隊挑戰(zhàn)成功的概率;
②該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人數(shù)的可能值及其概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某小商品生產(chǎn)廠家計劃每天生產(chǎn)型、型、型三種小商品共100個,生產(chǎn)一個型小商品需5分鐘,生產(chǎn)一個型小商品需7分鐘,生產(chǎn)一個型小商品需4分鐘,已知總生產(chǎn)時間不超過10小時.若生產(chǎn)一個型小商品可獲利潤8元,生產(chǎn)一個型小商品可獲利潤9元,生產(chǎn)一個型小商品可獲利潤6元.該廠家合理分配生產(chǎn)任務(wù)使每天的利潤最大,則最大日利潤是__________元.
查看答案和解析>>
科目: 來源: 題型:
【題目】年月日,國務(wù)院總理李克強在做政府工作報告時說,打好精準(zhǔn)脫貧攻堅戰(zhàn).江西省貧困縣脫貧摘帽取得突破性進展:年,穩(wěn)定實現(xiàn)扶貧對象“兩不愁、三保障”,貧困縣全部退出.圍繞這個目標(biāo),江西正著力加快增收步伐,提高救助水平,改善生活條件,打好產(chǎn)業(yè)扶貧、保障扶貧、安居扶貧三場攻堅戰(zhàn).為響應(yīng)國家政策,老張自力更生開了一間小型雜貨店.據(jù)長期統(tǒng)計分析,老張的雜貨店中某貨物每天的需求量在與之間,日需求量(件)的頻率分布如下表所示:
己知其成本為每件元,售價為每件元若供大于求,則每件需降價處理,處理價每件元.
(1)設(shè)每天的進貨量為,視日需求量的頻率為概率,求在每天進貨量為的條件下,日銷售量的期望值(用表示);
(2)在(1)的條件下,寫出和的關(guān)系式,并判斷為何值時,日利潤的均值最大.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
(1)求的軌跡
(2)過軌跡上任意一點作圓的切線,設(shè)直線的斜率分別是,試問在三個斜率都存在且不為0的條件下, 是否是定值,請說明理由,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com