相關習題
 0  264550  264558  264564  264568  264574  264576  264580  264586  264588  264594  264600  264604  264606  264610  264616  264618  264624  264628  264630  264634  264636  264640  264642  264644  264645  264646  264648  264649  264650  264652  264654  264658  264660  264664  264666  264670  264676  264678  264684  264688  264690  264694  264700  264706  264708  264714  264718  264720  264726  264730  264736  264744  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數的圖象的一條對稱軸為,其中為常數,且,給出下述四個結論:

①函數的最小正周期為;

②將函數的圖象向左平移所得圖象關于原點對稱;

③函數在區(qū)間,上單調遞增;

④函數在區(qū)間上有個零點.

其中所有正確結論的編號是(

A.①②B.①③C.①③④D.①②④

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數.

1)當時,求函數的圖象在處的切線方程;

2)討論函數的單調性;

3)當時,若方程有兩個不相等的實數根,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15℃B點表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5

查看答案和解析>>

科目: 來源: 題型:

【題目】已知A,B,C分別為△ABC的三邊ab,c所對的角,向量(sin A,sin B),(cos B,cos A),且sin 2C.

(1)求角C的大;

(2)sin A,sin C,sin B成等差數列,且,求邊c的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為橢圓的左、右焦點,離心率為,點在橢圓上.

1)求橢圓的方程;

2)過的直線分別交橢圓于,且,問是否存在常數,使得成等差數列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據正弦定理把轉化為邊的關系,進而根據ABC的周長,聯立方程組,可求出a的值.

根據正弦定理,可化為

∵△ABC的周長為,

聯立方程組,

解得a=2.

故選:B

【點睛】

(1)在三角形中根據已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉化,以達到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數值后,還要根據角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.

型】單選題
束】
7

【題目】已知數列{an}中,an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目: 來源: 題型:

【題目】張強同學進行三次定點投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為

1)求張強同學三次投籃至少命中一次的概率;

2)記張強同學三次投籃命中的次數為隨機變量,求的概率分布及數學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】按照下列要求,分別求有多少種不同的方法?

15個不同的小球放入3個不同的盒子;

25個不同的小球放入3個不同的盒子,每個盒子至少一個小球;

35個相同的小球放入3個不同的盒子,每個盒子至少一個小球;

45個不同的小球放入3個不同的盒子,恰有1個空盒.

查看答案和解析>>

同步練習冊答案