相關(guān)習(xí)題
 0  170281  170289  170295  170299  170305  170307  170311  170317  170319  170325  170331  170335  170337  170341  170347  170349  170355  170359  170361  170365  170367  170371  170373  170375  170376  170377  170379  170380  170381  170383  170385  170389  170391  170395  170397  170401  170407  170409  170415  170419  170421  170425  170431  170437  170439  170445  170449  170451  170457  170461  170467  170475  266669 

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
某柑桔基地因冰雪災(zāi)害,使得果林嚴重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實施;若實施方案一,預(yù)計當年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5. 若實施方案二,預(yù)計當年可以使柑桔產(chǎn)量達到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6. 實施每種方案,第二年與第一年相互獨立。令表示方案實施兩年后柑桔產(chǎn)量達到災(zāi)前產(chǎn)量的倍數(shù)。
(1)寫出的分布列;
(2)實施哪種方案,兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施兩年后柑桔產(chǎn)量達不到災(zāi)前產(chǎn)量,預(yù)計可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達到災(zāi)前產(chǎn)量,預(yù)計可帶來效益15萬元;柑桔產(chǎn)量超過災(zāi)前產(chǎn)量,預(yù)計可帶來效益20萬元;問實施哪種方案所帶來的平均效益更大?

查看答案和解析>>

科目: 來源:不詳 題型:填空題

若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=__________。(用數(shù)字作答)

查看答案和解析>>

科目: 來源:不詳 題型:填空題

設(shè)隨機變量,且DX=2,則事件“X=1”   的概率為     (用數(shù)學(xué)作答).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)p在[0,5]上隨機地取值,求方程有實根的概率。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

在一次食品衛(wèi)生大檢查中,執(zhí)法人員從抽樣中得知,目前投放我市的甲、乙兩種食品的合格率分別為。
(1)今有三位同學(xué)聚會,若每人分別從兩種食品中任意各取一件,求恰好有一人取到兩件都是不合格品的概率.
(2)若某消費者從兩種食品中任意各購一件,設(shè)表示購得不合格食品的件數(shù),試寫出的分布列,并求其數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本題滿分12分)
某校從參加高一年級期中考試的學(xué)生中隨機抽出名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;
(Ⅲ)若從名學(xué)生中隨機抽取人,抽到的學(xué)生成績在分,在分,在分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

2010年5月1日,上海世博會將舉行,在安全保障方面,警方從武警訓(xùn)練基地挑選防爆警察,從體能、射擊、反應(yīng)三項指標進行檢測,如果這三項中至少有兩項通過即可入選。假定某基地有4名武警戰(zhàn)士(分別記為A、B、C、D)擬參加挑選,且每人能通過體能、射擊、反應(yīng)的概率分別為。這三項測試能否通過相互之間沒有影響。
小題1:求A能夠入選的概率;
小題2:規(guī)定:按人選人數(shù)得訓(xùn)練經(jīng)費(每人選1人,則相應(yīng)的訓(xùn)練基地得到3000元的訓(xùn)練經(jīng)費),求該基地得到訓(xùn)練經(jīng)費的分布列與數(shù)學(xué)期望。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分13分)
在某校組織的一次籃球定點投籃比賽中,兩人一對一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對方接替投籃. 現(xiàn)由甲、乙兩人進行一對一投籃比賽,甲和乙每次投籃命中的概率分別是.兩人共投籃3次,且第一次由甲開始投籃. 假設(shè)每人每次投籃命中與否均互不影響.
(Ⅰ)求3次投籃的人依次是甲、甲、乙的概率;
(Ⅱ)若投籃命中一次得1分,否則得0分. 用ξ表示甲的總得分,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(14分)某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響.已知師父加工一個零件是精品的概率為,師徒二人各加工2個零件都是精品的概率為
(I)求徒弟加工2個零件都是精品的概率;
(II)求徒弟加工該零件的精品數(shù)多于師父的概率;
(III)設(shè)師徒二人加工出的4個零件中精品個數(shù)為,求的分布列與均值E.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
班主任為了對本班學(xué)生的考試成績進行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,則樣本中男、女生各有多少人;
(2)隨機抽取8位同學(xué),數(shù)學(xué)分數(shù)依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定80分(含80分)以上為良好,90分(含90分)以上為優(yōu)秀,在良好的條件下,求兩科均為優(yōu)秀的概率;
②若這8位同學(xué)的數(shù)學(xué)、物理分數(shù)事實上對應(yīng)下表:
學(xué)生編號
1
2
3
4
5
6
7
8
數(shù)學(xué)分數(shù)
60
65
70
75
80
85
90
95
物理分數(shù)
72
77
80
84
88
90
93
95
 
根據(jù)上表數(shù)據(jù)可知,變量之間具有較強的線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到0.01).(參考公式:,其中,;參考數(shù)據(jù):,,,

查看答案和解析>>

同步練習(xí)冊答案