相關習題
 0  169424  169432  169438  169442  169448  169450  169454  169460  169462  169468  169474  169478  169480  169484  169490  169492  169498  169502  169504  169508  169510  169514  169516  169518  169519  169520  169522  169523  169524  169526  169528  169532  169534  169538  169540  169544  169550  169552  169558  169562  169564  169568  169574  169580  169582  169588  169592  169594  169600  169604  169610  169618  266669 

科目: 來源:不詳 題型:解答題

如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸為AB,過點B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點且
AF1
F1B
=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ.連接AQ并延長交直線l于點M,N為MB的中點,判定直線QN與以AB為直徑的圓O的位置關系.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓Cl的長軸三等分,且圓C2的面積為π.橢圓Cl的下頂點為E,過坐標原點O且與坐標軸不重合的任意直線l與圓C2相交于點A、B,直線EA、EB與橢圓C1的另一個交點分別是點P、M.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)(i)設PM的斜率為t,直線l斜率為K1,求
K1
t
的值;
(ii)求△EPM面積最大時直線l的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線為
l1,l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P,設l與橢圓C的兩個交點由上至下依次為A、B(如圖).
(1)當l1與l2的夾角為60°,且△POF的面積為
3
2
時,求橢圓C的方程;
(2)當
FA
AP
時,求當λ取到最大值時橢圓的離心率.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

設F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個焦點,P為橢圓上一點,已知P、F1、F2是一個直角三角形的三個頂點,且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為______.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設A,B分別為橢圓
x2
a2
+
y2
b2
=1(a,b>0)
的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知O為坐標原點,F(xiàn)是拋物線E:y2=4x的焦點.
(Ⅰ)過F作直線l交拋物線E于P,Q兩點,求
OP
OQ
的值;
(Ⅱ)過點T(t,0)作兩條互相垂直的直線分別交拋物線E于A,B,C,D四點,且M,N分別為線段AB,CD的中點,求△TMN的面積最小值.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

k為何值時,直線y=kx+2和橢圓2x2+3y2=6有兩個交點( 。
A.-
6
3
<k<
6
3
B.k>
6
3
或k<-
6
3
C.-
6
3
≤k≤
6
3
D.k≥
6
3
或k≤-
6
3

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓x2+
y2
2
=1
上的兩個焦點,A,B是過焦點F1的一條動弦,則△ABF2的面積的最大值為(  )
A.
2
2
B.
2
C.1D.2
2

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,設點F坐標為(1,0),點P在y軸上運動,點M在x軸運動上,其中
PM
PF
=0,若動點N滿足條件
PN
=
MP

(Ⅰ)求動點N的軌跡E的方程;
(Ⅱ)過點F(1,0)的直線l和l′分別與曲線E交于A、B兩點和C、D兩點,若l⊥l′,試求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(
2
+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案