相關(guān)習題
 0  169079  169087  169093  169097  169103  169105  169109  169115  169117  169123  169129  169133  169135  169139  169145  169147  169153  169157  169159  169163  169165  169169  169171  169173  169174  169175  169177  169178  169179  169181  169183  169187  169189  169193  169195  169199  169205  169207  169213  169217  169219  169223  169229  169235  169237  169243  169247  169249  169255  169259  169265  169273  266669 

科目: 來源:不詳 題型:解答題

橢圓C=1(ab>0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓E=1(a>b>0)的右焦點為F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,OP(O為坐標原點)與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)A,B分別是直線yxy=-x上的動點,且|AB|=,設(shè)O為坐標原點,動點P滿足.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CDEF,設(shè)CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點,若直線AO,BO分別交直線l:y=x-2于M,N兩點,求|MN|的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|·|BF|的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,在直角坐標系xOy中,點P到拋物線C:y2=2px(p>0)的準線的距離為.點M(t,1)是C上的定點,A,B是C上的兩動點,且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數(shù)b的值;
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,橢圓過點P(1, ),其左、右焦點分別為F1,F2,離心率e=,M,N是直線x=4上的兩個動點,且·=0.

(1)求橢圓的方程;
(2)求|MN|的最小值;
(3)以MN為直徑的圓C是否過定點?請證明你的結(jié)論。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知定點A(-2,0)和B(2,0),曲線E上任一點P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長PB與曲線E交于另一點Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤),延長PB與曲線E交于另一點Q,如果存在某一位置,使得從PQ的中點R向l作垂線,垂足為C,滿足PC⊥QC,求a的取值范圍。

查看答案和解析>>

同步練習冊答案