若不等式ax+x+a<0的解集為 Φ,則實數(shù)a的取值范圍(  )

A   a≤-或a≥   B   a<     C     -≤a≤         D  a≥
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式
ax-5x2-a
<0
的解集為M,若5∉M,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式|ax+1|+a|x+1|≥3a.
(I)當(dāng)a=1時,解上述不等式.
(II)當(dāng)a<0時,若上述不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•萊蕪二模)已知函數(shù)f(x)=ax+lnx,g(x)=ex
(I)當(dāng)a≤0時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式g(x)<
x-m
x
有解,求實數(shù)m的取值菹圍;
(Ⅲ)定義:對于函數(shù)y=F(x)和y=G(x)在其公共定義域內(nèi)的任意實數(shù)x0,稱|F(x0)-G(x0)|的值為兩函數(shù)在x0處的差值.證明:當(dāng)a=0時,函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有差值都大干2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)(1)證明:當(dāng)x∈[0,1]時,
2
2
x≤sinx≤x
;
(2)若不等式ax+x2+
x3
2
+2(x+2)cosx≤4
對x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案