設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且,若過,三點(diǎn)的圓恰好與直線相切. 過定點(diǎn)的直線與橢圓交于,兩點(diǎn)(點(diǎn)在點(diǎn),之間).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請(qǐng)說明理由;

(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

 

【答案】

 

(Ⅰ)

(Ⅱ)

(Ⅲ)

【解析】(Ⅰ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image004.png">,

所以中點(diǎn).

設(shè)的坐標(biāo)為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image009.png">,

所以,,且過三點(diǎn)的圓的圓心為,半徑為.           ………………………… 2分

因?yàn)樵搱A與直線相切,所以.

解得,所以.

    故所求橢圓方程為.    …………………………………… 4分

(Ⅱ)設(shè)的方程為),

    由.

    設(shè),,則.……………………5分

    所以.

              =

.

由于菱形對(duì)角線互相垂直,則.……………………6分

    所以.

.

    因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image022.png">,所以.

    所以

.

所以

解得. 即.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image022.png">,所以.

故存在滿足題意的點(diǎn)的取值范圍是. ……………… 8分

(Ⅲ)①當(dāng)直線斜率存在時(shí),

設(shè)直線方程為,代入橢圓方程

.

,得.       …………………………………………… 9分

設(shè),

,.  

,所以. 所以. …… 10分

所以,.

所以.  所以.

整理得.       ……………………………………… 11分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image047.png">,所以. 即. 所以.

解得.

,所以.  …………………………………… 13分

②又當(dāng)直線斜率不存在時(shí),直線的方程為,

此時(shí),,,

,所以.

所以,即所求的取值范圍是. ……………… 14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0
.則橢圓C的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且

(1)求橢圓的離心率; (2)若過、三點(diǎn)的圓恰好與直線相切,

求橢圓的方程;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山西省第一學(xué)期高三12月月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線軸的交點(diǎn)為,且經(jīng)過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓兩點(diǎn),求面積的最大值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2010-2011學(xué)年重慶市主城八區(qū)高三第二次學(xué)業(yè)調(diào)研抽測(cè)文科數(shù)學(xué)卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且

 (Ⅰ)求橢圓的離心率;

(Ⅱ)若過、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;                       

(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),

若點(diǎn)使得以為鄰邊的平行四邊形是菱形,求的取值范圍.      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案