在正方體ABCD-A1B1C1D1中,M、N為棱AB與AD的中點,則異面直線MN與BD1所成角的余弦值是( )
A.
B.
C.
D.
【答案】分析:求異面直線所成的角,可以做適當?shù)钠揭,把異面直線轉化為相交直線,然后在相關的三角形中借助正弦或余弦定理解出所求的角.平移時主要是根據(jù)中位線和中點條件,或者是特殊的四邊形,三角形等.
解答:解:連接BD,∵MN∥BD,
∴異面直線MN與BD1所成的角即為直線BD與BD1所成的角:∠D1BD
∵在Rt△D1DB中,設D1D=1,則DB=,D1B=
∴cos∠D1BD=
∴異面直線MN與BD1所成的角的余弦值為
故選D.
點評:本小題考查空間中的線面關系,異面直線所成的角、解三角形等基礎知識,考查空間想象能力和思維能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結論正確的為
①③④
.(寫出所有正確結論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結論的序號是
 

查看答案和解析>>

同步練習冊答案