已知是關(guān)于的方程的根,
證明:(Ⅰ);(Ⅱ).
(Ⅰ)證明見(jiàn)解析;(Ⅱ)證明見(jiàn)解析.
解析試題分析:(Ⅰ)構(gòu)造函數(shù),通過(guò)導(dǎo)函數(shù)可知函數(shù)在上是增函數(shù),而,,故在上有唯一實(shí)根,即,然后利用函數(shù)的單調(diào)性,用反證法證明;(Ⅱ)先證,再由,可得.注意放縮法的技巧.
試題解析:(Ⅰ)設(shè),則
顯然,在上是增函數(shù)
在上有唯一實(shí)根,即 4分
假設(shè),
則
,矛盾,故 8分
(Ⅱ)
()
,
13分
方法二:
由(Ⅰ)=
考點(diǎn):1.函數(shù)的零點(diǎn);2.函數(shù)的單調(diào)性的應(yīng)用;3.放縮法證明不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a,b,c均為正數(shù),且a+b+c=1.
求證:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)求不等式的解集;
(2)若關(guān)于的不等式在上無(wú)解,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)設(shè)x≥1,y≥1,證明x+y+≤++xy;
(2)1<a≤b≤c,證明logab+logbc+logca≤logba+logcb+logac.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
①若不等式的解集為,求實(shí)數(shù)的值;
②在①的條件下,若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求最大值?
(2)若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=lnx+-1,證明:
(1)當(dāng)x>1時(shí),f(x)< (x-1);
(2)當(dāng)1<x<3時(shí),f(x)<.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com