已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211615799382.png" style="vertical-align:middle;" />,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖像如圖所示.下列命題中,真命題的個(gè)數(shù)為 (    ).
第12題圖            
① 函數(shù)是周期函數(shù);② 函數(shù)是減函數(shù);③ 如果當(dāng)時(shí),的最大值是,那么的最大值為;④ 當(dāng)時(shí),函數(shù)個(gè)零點(diǎn),其中真命題的個(gè)數(shù)是 (    )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
D.
對(duì)于①根據(jù)條件無(wú)法確定其周期性,所以錯(cuò);對(duì)于②由于在(0,2)上導(dǎo)數(shù)小于零,所以對(duì);對(duì)于由導(dǎo)數(shù)的圖像可畫(huà)出原函數(shù)的草圖,可知f(x)在定義域的最大值是2,那么t的最大值應(yīng)為5,錯(cuò);對(duì)于④:由函數(shù)f(x)的草圖可知,由于極小值f(2)的值不確定,所以此項(xiàng)也錯(cuò).正確的只有②,應(yīng)選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行。 
(1)求的解析式; 
(2)求函數(shù)的單調(diào)遞增區(qū)間及極值;
(3)求函數(shù)的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是定義在上的偶函數(shù),當(dāng)時(shí),且
則不等式的解集為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若曲線處的切線方程為,求實(shí)數(shù)的值;
(Ⅱ)若,且對(duì)任意,都,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)有兩個(gè)極值點(diǎn)滿足,則直線的斜率的取值范圍是(  )                          
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問(wèn):m在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè),使得成立,試求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=+ln x,則(  )
A.x=為f(x)的極大值點(diǎn)B.x=為f(x)的極小值點(diǎn)
C.x=2為f(x)的極大值點(diǎn)D.x=2為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知R上可導(dǎo)函數(shù)的圖象如圖所示,則不等式的解集為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案