【題目】西北某省會(huì)城市計(jì)劃新修一座城市運(yùn)動(dòng)公園,設(shè)計(jì)平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動(dòng)場(chǎng)所;四邊形為文藝活動(dòng)場(chǎng)所,,為運(yùn)動(dòng)小道(不考慮寬度),,千米.

(1)求小道的長(zhǎng)度;

(2)求球類活動(dòng)場(chǎng)所的面積最大值.

【答案】(1)(2)

【解析】

(1)連接BD,在△BCD中由余弦定理得BD的值,在Rt△BDE中,求解BE即可;

(2)設(shè)∠ABEα,在△ABE中,由正弦定理求解AB,AE,表示SABE,然后求解最大值.

如解圖所示,連接,

(1)在三角形中,千米,

由余弦定理得:,

所以

,,∴

,∴

(千米)

∴小道的長(zhǎng)度為千米

(2)如圖所示,設(shè),∵,

在三角形由正弦定理可得,

,

,

,

,∴,

故當(dāng)時(shí),取得最大值,最大值為.

∴球類活動(dòng)場(chǎng)所的面積最大值為平方千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海濱浴場(chǎng)一天的海浪高度是時(shí)間的函數(shù),記作,下表是某天各時(shí)的浪高數(shù)據(jù):

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

1)選用一個(gè)三角函數(shù)來近似描述這個(gè)海濱浴場(chǎng)的海浪高度與時(shí)間的函數(shù)關(guān)系;

2)依據(jù)規(guī)定,當(dāng)海浪高度不少于時(shí)才對(duì)沖浪愛好者開放海濱浴場(chǎng),請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的之間,有多少時(shí)間可供沖浪愛好者進(jìn)行沖浪?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線,曲線 .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2),交于不同四點(diǎn),這四點(diǎn)在上的排列順次為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則函數(shù)的圖象為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°C處.

(1)求船的航行速度是每小時(shí)多少千米?

(2)又經(jīng)過一段時(shí)間后,船到達(dá)海島的正西方向的D處,問此時(shí)船距島A有多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1的焦點(diǎn),且拋物線C1上點(diǎn)P處的切線與圓C2相切于點(diǎn)Q.

當(dāng)直線PQ的方程為時(shí),求 拋物線C1的方程;

當(dāng)正數(shù)P變化時(shí),記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且

(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2)是否存在實(shí)數(shù),對(duì)任意,不等式恒成立?若存在,求出的取值范圍,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)M,N的中點(diǎn)S處,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與M,N等距離的一點(diǎn)O處設(shè)一個(gè)宣講站,記O點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為

1)設(shè),試將L表示為x的函數(shù)并寫出其定義域;

2)試?yán)茫?/span>1)的函數(shù)關(guān)系式確定宣講站O的位置,使宣講站O到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率為2,過點(diǎn)、斜率為1的直線與雙曲線交于、兩點(diǎn)且,.

(1)求雙曲線方程。

(2)設(shè)為雙曲線右支上動(dòng)點(diǎn),為雙曲線的右焦點(diǎn),在軸負(fù)半軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案