【題目】某大學(xué)進(jìn)行自主招生測試,需要對邏輯思維和閱讀表達(dá)進(jìn)行能力測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如圖所示,下列敘述正確的是( )
A.甲同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
B.乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
C.甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前
D.甲同學(xué)的總成績排名比丙同學(xué)的總成績排名更靠前
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,橢圓:的離心率為,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點. 設(shè)過點的動直線與相交于兩點.
(1)求的方程;
(2)是否存在這樣的直線,使得的面積為,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機(jī)構(gòu)對產(chǎn)品進(jìn)行質(zhì)量檢測,并依據(jù)質(zhì)量指標(biāo)來衡量產(chǎn)品的質(zhì)量.當(dāng)時,產(chǎn)品為優(yōu)等品;當(dāng)時,產(chǎn)品為一等品;當(dāng)時,產(chǎn)品為二等品.第三方檢測機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取1件,求該產(chǎn)品為優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機(jī)構(gòu)對要購買的80件產(chǎn)品進(jìn)行抽樣檢測.買家、企業(yè)及第三方檢測機(jī)構(gòu)就檢測方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費用250元由企業(yè)承擔(dān).記企業(yè)的收益為元,求的分布列與數(shù)學(xué)期望;
(3)商場為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據(jù)拋硬幣的結(jié)果,操控機(jī)器人在方格上行進(jìn),已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、……、第50格.機(jī)器人開始在第0格,客戶每擲一次硬幣,機(jī)器人向前移動一次,若擲出正面,機(jī)器人向前移動一格(從到),若擲出反面,機(jī)器人向前移動兩格(從到),直到機(jī)器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束,若機(jī)器人停在“勝利大本營”,則可獲得優(yōu)惠券.設(shè)機(jī)器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購買該款產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點在上.
(1) 求橢圓的方程;
(2) 設(shè)分別是橢圓的上、下焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的家庭收入情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機(jī)抽取了戶家庭進(jìn)行問卷調(diào)查,經(jīng)調(diào)查發(fā)現(xiàn),這些家庭的月收人在元到元之間,根據(jù)統(tǒng)計數(shù)據(jù)作出:
(1)經(jīng)統(tǒng)計發(fā)現(xiàn),該社區(qū)居民的家庭月收人(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù).若落在區(qū)間的左側(cè),則可認(rèn)為該家庭屬“收入較低家庭" ,社區(qū)將聯(lián)系該家庭,咨詢收入過低的原因,并采取相應(yīng)措施為該家庭提供創(chuàng)收途徑.若該社區(qū)家庭月收入為元,試判斷家庭是否屬于“收人較低家庭”,并說明原因;
(2)將樣本的頻率視為總體的概率
①從該社區(qū)所有家庭中隨機(jī)抽取戶家庭,若這戶家庭月收人均低于元的概率不小于,求的最大值;
②在①的條件下,某生活超市贊助了該社區(qū)的這次調(diào)查活動,并為這次參與調(diào)在的家庭制定了贈送購物卡的活動,贈送方式為:家庭月收入低于的獲贈兩次隨機(jī)購物卡,家庭月收入不低于的獲贈一次隨機(jī)購物卡;每次贈送的購物卡金額及對應(yīng)的概率分別為:
贈送購物卡金額(單位:元) | |||
概率 |
則家庭預(yù)期獲得的購物卡金額為多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設(shè)置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規(guī)則是:每人按先A后B的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為和,且在A,B兩點投中與否相互獨立.
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規(guī)則投籃兩次,求甲得分比乙高的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其中.
(1)討論的奇偶性;
(2)時,求證:的最小正周期是;
(3),當(dāng)函數(shù)的圖像與的圖像有交點時,求滿足條件的的個數(shù),說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,△PAC為等腰直角三角形,為正三角形,D為A的中點,AC=2.
(1)證明:PB⊥AC;
(2)若三棱錐的體積為,求二面角A—PC—B的余弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com