(2013•浙江)已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x﹣2于M、N兩點,求|MN|的最小值.

(1)x2=4y
(2)當t=﹣時,|MN|的最小值是

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C2分別相交于A ,B兩點.
(1)如圖所示,若,求直線l的方程;
(2)若坐標原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分6分.
已知橢圓過點,兩焦點為、是坐標原點,不經(jīng)過原點的直線與橢圓交于兩不同點、.
(1)求橢圓C的方程;       
(2) 當時,求面積的最大值;
(3) 若直線、、的斜率依次成等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xOy中,已知圓心在第二象限、半徑為2的圓C與直線y=x相切于坐標原點O,橢圓+=1與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓的右焦點F的距離等于線段OF的長,若存在,請求出Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
(1)當直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)設A,B是橢圓C上的兩點,△AOB的面積為.若A、B兩點關(guān)于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果=t,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知動點到點的距離為,到軸的距離為,且
(1)求點的軌跡的方程;
(2) 若直線斜率為1且過點,其與軌跡交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

同步練習冊答案