【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率,且過(guò)拋物線的焦點(diǎn).
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線交拋物線于兩不同點(diǎn),交軸于點(diǎn),已知, ,求證: 為定值.
【答案】(1)拋物線的方程為,橢圓的標(biāo)準(zhǔn)方程為;(2)見解析.
【解析】試題分析:(1)利用拋物線C1:y2=2px上一點(diǎn)M(3,y0)到其焦點(diǎn)F的距離為4;求出p,即可得到拋物線方程,通過(guò)橢圓的離心率e=,,且過(guò)拋物線的焦點(diǎn)F(1,0)求出a,b,即可得到橢圓的方程;
(2)直線l1的斜率必存在,設(shè)為k,設(shè)直線l與橢圓C2交于A(x1,y1),B(x2,y2),求出直線l的方程為y=k(x-1),N(0,-k),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理以及判別式,通過(guò)向量關(guān)系式即可求出λ+μ為定值.
試題解析:
(Ⅰ)拋物線的準(zhǔn)線為, 所以,所以
拋物線的方程為
所以,,解得所以橢圓的標(biāo)準(zhǔn)方程為
(Ⅱ)直線的斜率必存在,設(shè)為,設(shè)直線與拋物線交于
則直線的方程為,
聯(lián)立方程組:
所以 , (*)
由得:
得:
所以
將(*)代入上式,得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a4+a7=20,對(duì)任意的k∈N都有Sk+1=3Sk+k2 .
(I) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項(xiàng)公式及{(﹣1)m﹣1bm}的前2m項(xiàng)和T2m .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)拋物線 : 的準(zhǔn)線 與 軸交于橢圓 : 的右焦點(diǎn) , 為 的左焦點(diǎn).橢圓的離心率為 ,拋物線 與橢圓 交于 軸上方一點(diǎn) ,連接 并延長(zhǎng)交 于點(diǎn) , 為 上一動(dòng)點(diǎn),且在 , 之間移動(dòng).
(1)當(dāng) 時(shí),求 的方程;
(2)若 的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)。求到直線距離的最大值以及此時(shí) 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:條件p:實(shí)數(shù)t滿足使對(duì)數(shù)log2(﹣2t2+7t﹣5)有意義;條件q:實(shí)數(shù)t滿足不等式t2﹣(a+3)t+a+2<0
(1)若命題¬p為真,求實(shí)數(shù)t的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年上半年,股票投資人袁先生同時(shí)投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對(duì)于甲股票,若賺錢則會(huì)賺取5萬(wàn)元,若賠錢則損失4萬(wàn)元;對(duì)于乙股票,若賺錢則會(huì)賺取6萬(wàn)元,若賠錢則損失5萬(wàn)元.
(Ⅰ)求袁先生2016年上半年同時(shí)投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過(guò)橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱A1B1的中點(diǎn),則直線AE與平面BDD1B1所成角的正弦值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期為3π.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為,離心率為,過(guò)作與軸垂直的直線與橢圓交于兩點(diǎn),.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線的斜率存在且不為0,直線交橢圓于兩點(diǎn),若中點(diǎn)為,為原點(diǎn),直線交于點(diǎn),若以為直徑的圓過(guò)右焦點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com