已知函數(shù)是奇函數(shù)。
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)在R上的單調(diào)性并用定義法證明;
(3)若函數(shù)的圖像經(jīng)過(guò)點(diǎn),這對(duì)任意不等式恒成立,求實(shí)數(shù)m的范圍。

(1)-1
(2)利用定義法設(shè)作差,然后變形定號(hào)來(lái)得到證明即可。
(3)

解析試題分析:(1)由,得f(0)=0,解得
(2)根據(jù)題意,由于函數(shù)是奇函數(shù),那么設(shè)
則可知,可知函數(shù)
函數(shù)上為減函數(shù)。證明略
(3) 
所以由題意上恒成立。
所以
考點(diǎn):函數(shù)單調(diào)性
點(diǎn)評(píng):主要是考查了函數(shù)單調(diào)性以及函數(shù)的最值的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知函數(shù))在區(qū)間上有最大值和最小值.設(shè)
(1)求的值;
(2)若不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)當(dāng)a=-2時(shí),求不等式f(x)<g(x)的解集;
(Ⅱ)設(shè)a>-1,且當(dāng)x∈[,)時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)正實(shí)數(shù)滿足.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中,區(qū)間.
(Ⅰ)求的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為;
(Ⅱ)給定常數(shù),當(dāng)時(shí),求長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/0/1klih2.png" style="vertical-align:middle;" />,若上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:;
(Ⅲ)若是“一階比增函數(shù)”,且有零點(diǎn),求證:有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí)恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
函數(shù)f(x)=x+(x>0)在區(qū)間(0,2)上遞減;
(1)函數(shù)f(x)=x+(x>0)在區(qū)間                  上遞增.
當(dāng)x=                 時(shí),y最小=                         .
(2)證明:函數(shù)f(x)=x+在區(qū)間(0,2)上遞減.
(3)思考:函數(shù)f(x)=x+(x<0)有最值嗎?如果有,那么它是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)有極值,
(Ⅰ)求的取值范圍;
(Ⅱ)求極大值點(diǎn)和極小值點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案