如圖,AB和CD是圓的兩條弦, AB與CD相交于點E,且,,則 ______;______.
,

試題分析:設,由得,,由相交線定理得,,即,解得;有圓周角定理可知,,又,所以,所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD內(nèi)接于半徑為r的圓O,點P是圓周上任意一點,求證:PA2+PB2+PC2+PD2=8r2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為E,∠ABC=45°,過E作AD的垂線交AD于F,交BC于G,過E作AD的平行線交AB于H.求證:FG2=AF·DF+BG·CG+AH·BH.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足
MF
FB
=
2
-1

(1)求橢圓C的方程;
(2)是否存在直線l,當直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是⊙的直徑,是⊙切線,為切點,⊙上有兩點、,直線的延長線于點,,,則⊙的半徑是_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交⊙O于點E,連結BE.

求證:(1)BE=DE;
(2)∠D=∠ACE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,AB為⊙O的直徑,C為⊙O上一點,AP和過C的切線互相垂直,垂足為P,過B的切線交過C的切線于T,PB交⊙O于Q,若∠BTC=120°,AB=4,則PQ·PB=(  )
A.2B.3C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖:兩圓相交于點、,直線分別與兩圓交于點、,,則           .

查看答案和解析>>

同步練習冊答案