【題目】(I), 恒成立,求常數(shù)的取值范.

已知非零常數(shù)、滿足,求不等式的解集;

【答案】(1),或;(2),當(dāng)時(shí),原不等式的解集為;當(dāng)時(shí),原不等式的解集為.

【解析】試題分析:(1)問題轉(zhuǎn)化為(1)( 2x+1)0,通過討論的范圍求出不等式的解集,從而求出的范圍即可.

(2)根據(jù)條件可得,進(jìn)而,或,分別討論求解即可.

試題解析:

(1)由已知得,|x |x10,(x )2(x1)2

(1)( 2x+1)0,

=1時(shí),( 1)( 2x+1)0恒成立

>1時(shí),由(1)( 2x+1)0得, 2x1,從而 3/p>

<1時(shí),由(1)( 2x+1)0得, 2x1,從而 1

綜上所述,a的取值范圍為(,1]∪[3,+∞)…(10分)

(2),,

,或,

當(dāng)時(shí), ,

當(dāng)時(shí), ,

,或,

綜上,當(dāng)時(shí),原不等式的解集為

當(dāng)時(shí),原不等式的解集為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活經(jīng)驗(yàn)告訴我們,當(dāng)水注進(jìn)容器(設(shè)單位時(shí)間內(nèi)進(jìn)水量相同)時(shí)水的高度隨著時(shí)間的變化而變化,在下圖中請選擇與容器相匹配的圖像,A對應(yīng)________;B對應(yīng)________C對應(yīng)________;D對應(yīng)________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)證明:對任意的,函數(shù)的圖像與直線最多有一個(gè)交點(diǎn);

(2)設(shè)函數(shù),若函數(shù)與函數(shù)的圖像至少有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB3AD4.現(xiàn)將長方形沿對角線BD折起,使ACa,得到一個(gè)四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,直線ABCD能否垂直?若能,求出相應(yīng)a的值;若不能,請說明理由;

(2)求四面體ABCD體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求不等式的解集;

2)若,且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.

1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球?yàn)閮纱稳∏颍┑某晒θ》ù螖?shù)為隨機(jī)變量X,求X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(2,2),函數(shù)g(x)f(x1)f(32x)

(1)求函數(shù)g(x)的定義域;

(2)f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆河北省衡水中學(xué)高三上學(xué)期六調(diào)】已知函數(shù),其中均為實(shí)數(shù),為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值;

(2)設(shè),若對任意的恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案