已知角是的內(nèi)角,分別是其對邊長,且.
(1)若,求的長;
(2)設(shè)的對邊,求面積的最大值.
(1);(2).
解析試題分析:本題考查解三角形中的正弦定理和余弦定理的運(yùn)用以及求三角形面積的最值,考查基本的運(yùn)算能力.第一問,利用正弦定理求邊長,先利用同角三角函數(shù)的平方關(guān)系求出,再用正弦定理;第二問,先利用余弦定理找到和的關(guān)系,再利用基本不等式求的范圍,代入三角形面積公式中即可得到最大值.
試題解析: (1)在中,, ,
∴
由正弦定理知:
∴,∴
(2)當(dāng)時,.
又,因此,當(dāng)且僅當(dāng)時等號成立.
所以.故面積的最大為.
考點(diǎn):1.同角三角函數(shù)的平方關(guān)系;2.正弦定理;3.余弦定理;4.三角函數(shù)面積公式;5.基本不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,(,且為常數(shù)),設(shè)函數(shù),若的最大值為1.
(1)求的值,并求的單調(diào)遞增區(qū)間;
(2)在中,角、、的對邊、、,若,且,試判斷三角形的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com