已知函數(shù)在x=與x =l時都取得極值
(1)求a、b的值與函數(shù)f(x)的單調區(qū)間
(2)若對x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。

(1),增區(qū)間,減區(qū)間(2)

解析試題分析:
解:(1)


解得

遞增,在遞減
(2)由(1)知 在遞增,在遞減,在遞增

的最大值為
解得
考點:導數(shù)的應用
點評:導數(shù)常應用于求曲線的切線方程、求函數(shù)的最值與單調區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).若,求的值;當時,求的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)若函數(shù)圖像上的點到直線距離的最小值為,求的值;
(2)關于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(3)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


的單調區(qū)間
 兩點連線的斜率為,問是否存在常數(shù),且,當時有,當時有;若存在,求出,并證明之,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求的單調區(qū)間;
(2)若函數(shù)上無零點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).        
(Ⅰ)求的最小值;
(Ⅱ)若對所有都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;(3)當,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有極值,
(Ⅰ)求的取值范圍;
(Ⅱ)求極大值點和極小值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若上單調遞增,在上單調遞減,在上單調遞增,求實數(shù)的值;
(2)當時,求證:當時,

查看答案和解析>>

同步練習冊答案