【題目】設(shè)拋物線C:x2=4y的焦點(diǎn)為F,斜率為k的直線l經(jīng)過點(diǎn)F,若拋物線C上存在四個點(diǎn)到直線l的距離為2,則k的取值范圍是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣ ,
D.(﹣∞,﹣1)∪(1,+∞)

【答案】A
【解析】解:由題意,斜率為k的直線l的方程為y=kx+1,
設(shè)與直線l平行的直線方程為kx﹣y+b=0,由兩條平行線間的距離公式可得 =2,
∴b=1±2 ,
取直線kx﹣y+1﹣2 =0,即y=kx+1﹣2 ,
代入拋物線C:x2=4y,整理可得x2﹣4kx﹣4+8 =0,
∴△=16k2+16﹣32 >0,
∴k2+1﹣2 >0,
>2,
∴k 或k
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義運(yùn)算: ,例如:34=3,(﹣2)4=4,則函數(shù)f(x)=x2(2x﹣x2)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中, 平面 的中點(diǎn).

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市通過隨機(jī)詢問100名不同年級的學(xué)生是否能做到“扶跌倒老人”,得到如下列聯(lián)表:

做不到

能做到

高年級

45

10

低年級

30

15

則下列結(jié)論正確的是( )

附參照表:

0.10

0.025

0.01

2.706

5.024

6.635

參考公式:,其中

A. 在犯錯誤的概率不超過的前提下,認(rèn)為“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”

B. 在犯錯誤的概率不超過的前提下,“學(xué)生能否做到‘扶跌倒老人’與年級高低無關(guān)”

C. 以上的把握認(rèn)為“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”

D. 以上的把握認(rèn)為“學(xué)生能否做到‘扶跌倒老人’與年級高低無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】旅行社為去廣西桂林的某旅游團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為10000元,旅游團(tuán)中的每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅游團(tuán)的人數(shù)在20或20以下,飛機(jī)票每人收費(fèi)800元;若旅游團(tuán)的人數(shù)多于20,則實(shí)行優(yōu)惠方案,每多1人,機(jī)票費(fèi)每張減少10元,但旅游團(tuán)的人數(shù)最多為75,則該旅行社可獲得利潤的最大值為( )

A. 12000元B. 15000元C. 12500元D. 20000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知命題:實(shí)數(shù)滿足,命題:實(shí)數(shù)滿足方程表示的焦點(diǎn)在軸上的橢圓,且的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)設(shè)命題:關(guān)于的不等式的解集是;:函數(shù)的定義域?yàn)?/span>.若是真命題,是假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,分別是的中點(diǎn)將分別沿折起,使重合于點(diǎn).則下列結(jié)論正確的是( )

A.

B. 平面

C. 二面角的余弦值為

D. 點(diǎn)在平面上的投影是的外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>b>c>d>0,ad=bc.
(Ⅰ)證明:a+d>b+c;
(Ⅱ)比較aabbcddc與abbaccdd的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B,C是圓O上不同的三點(diǎn),線段CO與線段AB交于點(diǎn)D,若 (λ∈R,μ∈R),則λ+μ的取值范圍是(
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)

查看答案和解析>>

同步練習(xí)冊答案