(2012•馬鞍山二模)己知全集U=R,函數(shù)y=
1
x+2
的定義域為集合A,函數(shù)y=log2(x+1)的定義域為B,則集合A∩(CUB)=(  )
分析:根據(jù)負數(shù)沒有平方根及分母不為0,求出該函數(shù)y=
1
x+2
的定義域,確定出集合A,根據(jù)對數(shù)函數(shù)的真數(shù)大于0,求出函數(shù)y=log2(x+1)的定義域,確定出集合B,由全集為R,求出B的補集,找出B補集與A的公共部分,即可求出所求的集合.
解答:解:由函數(shù)y=
1
x+2
中x+2>0,得到x>-2,
∴集合A=(-2,+∞),
由函數(shù)y=log2(x+1)中x+1>0,得到x>-1,
∴集合B=(-1,+∞),又全集U=R,
∴CUB=(-∞,-1],
則A∩(CUB)=(-2,-1].
故選B
點評:此題屬于以函數(shù)定義域為平臺,考查了交、補集的運算,是一道基本題型,求補集時注意全集的范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•馬鞍山二模)設同時滿足條件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是與n無關的常數(shù))的無窮數(shù)列{bn}叫“嘉文”數(shù)列.已知數(shù)列{an}的前n項和Sn滿足:Sn=
a
a-1
(an-1)
(a為常數(shù),且a≠0,a≠1).
(1)求{an}的通項公式;
(2)設bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值,并證明此時{
1
bn
}
為“嘉文”數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•馬鞍山二模)現(xiàn)對某市工薪階層關于“樓市限購政策”的態(tài)度進行調(diào)查,隨機抽查了50人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如下表:
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并回答是否有99%的把握認為月收入以5500元為分界點對“樓市限購政策”的態(tài)度有差異?
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計
贊成 a= b=
不贊成 c= d=
合計
(Ⅱ)若從月收入在[55,65)的被調(diào)查對象中隨機選取兩人進行調(diào)查,求至少有一人不贊成“樓市限購政策”的概率.
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
參考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•馬鞍山二模)已知橢圓C1
x2
m+2
+
y2
n
=1
與雙曲線C2
x2
m
-
y2
n
=1
共焦點,則橢圓C1的離心率e的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•馬鞍山二模)己知在銳角△ABC中,角A,B,C所對的邊分別為a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大;
(II)當c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•馬鞍山二模)設x1,x2是關于x的方程x2+mx+
1+m2
=0的兩個不相等的實數(shù)根,那么過兩點A(x1,x12),B(x2,x22)的直線與圓x2+y2=2的位置關系是( 。

查看答案和解析>>

同步練習冊答案