在正六邊形的6個頂點中隨機選擇4個頂點,則構(gòu)成的四邊形是梯形的概率為     

試題分析:因為正六邊形的6個頂點中隨機選擇4個頂點,共有15種情況,那么可知構(gòu)成的四邊形是梯形的情況利用列舉法可知共有6種,那么利用古典概型概率公式可知為。故答案為。
點評:主要是考查了古典概型概率的求解運用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:每一組;第二組,……,第五組.右圖是按上述分組方法得到的頻率分布直方圖.

(I)若成績大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測試中成績良好的人數(shù);
(II)設(shè)、表示該班某兩位同學(xué)的百米測試成績,且已知,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩隊參加知識競賽,每隊人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分。假設(shè)甲隊中每人答對的概率均為,乙隊中人答對的概率分別為且各人正確與否相互之間沒有影響.用表示甲隊的總得分.
(Ⅰ)求隨機變量分布列  
(Ⅱ)用表示“甲、乙兩個隊總得分之和等于”這一事件,用表示“甲隊總得分大于乙隊總得分”這一事件,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

盒子中裝有編號為1,2,3,4,5,6,7的七個球,從中任意抽取兩個,則這兩個球的編號之積為偶數(shù)的概率是  (結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某集團公司舉辦一次募捐愛心演出,有1000人參加,每人一張門票,每張100元。在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動。第二輪抽獎由第一輪獲獎?wù)擢毩⒉僮靼粹o,電腦隨機產(chǎn)生兩個數(shù)),滿足電腦顯示“中獎”,且抽獎?wù)攉@得特等獎獎金;否則電腦顯示“謝謝”,則不中獎。
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)若該集團公司望在此次活動中至少獲得61875元的收益,則特等獎獎金最高可設(shè)置成多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機變量服從正態(tài)分布,且,則等于          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(1)隨機選取1件產(chǎn)品,求能夠通過檢測的概率;
(2)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(3)隨機選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

高一(1)班參加校生物競賽學(xué)生成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競賽人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并計算頻率分布直方圖中 間的矩形的高;
(2)若要從分?jǐn)?shù)在之間的學(xué)生中任選兩人進行某項研究,求至少有一人分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)進入某商場的每一位顧客購買甲種商品的概率0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的一位顧客購買甲、乙兩種商品中的一種的概率;
(2) 求進入商場的一位顧客至少購買甲、乙兩種商品中的一種的概率。

查看答案和解析>>

同步練習(xí)冊答案