設曲線在點(1,1)處的切線與x軸的交點的橫坐標為,令,則的值為                
-2 ;
因為對y=xn+1(n∈N*)求導得y′=(n+1)xn
令x=1得在點(1,1)處的切線的斜率k=n+1,
在點(1,1)處的切線方程為y-1=k(xn-1)=(n+1)(xn-1),
不妨設y=0,xn=,則所求的為-2.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題10分)如圖一邊長為48cm的正方形鐵皮,四角各截去一個大小相同的小正方形,然后折起,可以做成一個無蓋長方體容器。所得容器的體積V(單位:)是關(guān)于截去的小正方形的邊長x(單位:)的函數(shù)。⑴ 隨著x的變化,容積V是如何變化的?
⑵ 截去的小正方形的邊長為多少時,容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,函數(shù)
(1)當時,若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在區(qū)間上有解,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),= 是自然對數(shù)的底)
(1)若函數(shù)是(1,+∞)上的增函數(shù),求的取值范圍;
(2)若對任意的>0,都有,求滿足條件的最大整數(shù)的值;
(3)證明:,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)是定義在上的奇函數(shù),且對任意都有,當 時,,則的值為(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知處的切線與軸平行,若的圖象經(jīng)過四個象限,則實數(shù)的取值范圍是                     。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在半徑為圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設矩形的邊長,圓柱的體積為.

(1)寫出體積V關(guān)于的函數(shù)關(guān)系式;
(2)當為何值時,才能使做出的圓柱形罐子體積V最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線處的切線方程為_____________.

查看答案和解析>>

同步練習冊答案